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Abstract Flying Elephants (FE) is a generalization and a new interpretation of the
Hyperbolic Smoothing approach. The article introduces the fundamental smoothing
procedures. It contains a general overview of successful applications of the approach
for solving a select set of five important problems, namely: distance geometry, cover-
ing, clustering, Fermat–Weber and hub location. For each problem the original non-
smooth formulation and the succedaneous completely differentiable one are presented.
Computational experiments for all related problems obtained results that exhibited a
high level of performance according to all criteria: consistency, robustness and effi-
ciency. For each problem some results to illustrate the performance of FE are also
presented.

Keywords Non-differentiable optimization · Smoothing · Distance geometry ·
Covering · Clustering · Fermat–Weber problem · Hub location problem

1 Introduction

The core idea of the Flying Elephants method is the smoothing of a given non-
differentiable problem. In a sense, the process whereby this is achieved is a general-
ization and a new interpretation of a smoothing scheme, called Hyperbolic Smoothing
(HS), presented in Santos (2003) for non-differentiable problems in general. This
technique was developed through an adaptation of the hyperbolic penalty method
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originally introduced by Xavier (1982) in order to solve the general non-linear pro-
gramming problem.

By smoothing we fundamentally mean the substitution of an intrinsically non-
differentiable two-level problem by a C∞ differentiable single-level alternative. This
is achieved through the solution of a sequence of differentiable sub-problems which
gradually approaches the original problem. Each sub-problem, owing to its being
indefinitely differentiable, can be comfortably solved by using the most powerful and
efficient algorithms, such as conjugate gradient, quasi-Newton or Newton methods.

First, the FE method could incorporate any C∞ smoothing scheme, for instance the
hyperbolic smoothing approach. The HS approach has been applied for solving a set
of hard mathematical problems. Despite these problems having a non-differentiable
and a non-convex structure with a large number of local minimizers, the HS method
produced efficiently and reliably very deep local minima, since it contains an intrinsic
convexification power. So, HS can be applied for solving a broad number of non-
differentiable optimization problems presented in the literature Demyanov and Mal-
ozemov (1974); Du and Pardalos (1995); Rubinov (2006), and Demyanov et al. (2014).
The paper presents a survey of successful applications of the HS approach for solving
a set of important problems, namely: distance geometry (Macambira 2003; Xavier
2003; Souza 2010) and (Souza et al. 2011), covering (Xavier and Fernandes Oliveira
2005), clustering (Xavier 2010), (Xavier and Xavier 2011) and (Bagirov et al. 2012),
Fermat–Weber (Xavier 2012) and (Xavier et al. 2014a) and hub location (Gesteira
2012) and (Xavier et al. 2014b). There are other successful applications which are not
presented in this survey, such as: min −max (Chaves 1997) and (Bagirov et al. 2013)
and packing problems.

The new name of the methodology, Flying Elephants, is definitely not associated to
any analogy with the biology area. It is only a metaphor, but this name is fundamentally
associated with properties of the method. The Flying feature is directly derived from
the C∞ differentiability property of the method, which has the necessary power to
make the flight of the heavy elephant feasible. Moreover, it permits intergalactic trips
into spaces with large number of dimensions, differently from the short local searches
associated to traditional heuristic algorithms. On the other side, the convexification
feature also associated to the HS method is analogous to the local action of the Elephant
landing, eliminating a lot of local minima points.

2 The fundamental smoothing procedures

The Flying Elephants method is based on the hyperbolic smoothing of the non-
differentiable functions belonging to the optimization problem formulation. We will
present the two basic smoothing procedures. First, we will consider the smoothing
of the absolute value function |u|, where u ∈ �. For this purpose, for γ > 0, let us
define the function

θ(u, γ ) =
√

u2 + γ 2. (1)

Function θ has the following properties:

(a) lim
γ→0

θ(u, γ ) = |u|;
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Fig. 1 |u| and θ(u, γ ), for γ = [1, 0.8, 0.5, 0.3]

(b) θ is a C∞ function.
(c) θ

′
(u, γ ) = u/(u2 + γ 2)1/2;

(d) θ
′′
(u, γ ) = γ 2/(u2 + γ 2)3/2;

(e) θ
′′
(0, γ ) = 1/γ ;

(f) lim
γ→0

θ
′′
(0, γ ) = ∞.

Figure 1 depicts the gradual approximation of the smooth function θ(u, γ ) to the
absolute value function |u|, when parameter γ → 0+.

For smoothing the function ψ(u) = max(0, u) we use:

φ(u, τ ) =
(

u +
√

u2 + τ 2
)
/2. (2)

Function φ has the following properties:

(a) φ(u, τ ) > ψ(u),∀τ > 0;
(b) lim

τ→0
φ(u, τ ) = ψ(u);

(c) φ(u, τ ) is an increasing convex C∞ function in variable u;
(d) φ

′
(u, τ ) = 1 + u/(u2 + τ 2)1/2;

(e) φ
′′
(u, τ ) = τ 2/(u2 + τ 2)3/2;

(f) φ
′′
(0, τ ) = 1/τ ;

(g) lim
τ→0

φ
′′
(0, τ ) = ∞.

Figure 2 depicts the gradual approximation of the smooth function φ(u, τ ) to the
value function ψ(u), when parameter τ → 0+. Then, function φ can be used as an
approximation of function ψ .
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Fig. 2 ψ(u) and φ(u, τ ), for τ = [1, 0.8, 0.5, 0.3]

3 Distance geometry problem

Let G = (V, E) denote a graph, in which for each arc (i, j) ∈ E, is associated a
measure ai j > 0. The problem consists of associating a vector xi ∈ �n for each knot
i ∈ V, basically addressed to represent the position of this knot into a n−dimensional
space, so that Euclidean distances between knots, ‖xi −x j‖, corresponds appropriately
to the given measures ai j :

minimize f (x) =
∑

(i, j)∈E

(‖xi − x j‖ − ai j )
2, (3)

where x denotes the set of knot positions.
This problem is associated with important practical applications as in the protein

folding field Pardalos et al. (1996). Its formulation presents the non-differentiable
property due the presence of the Euclidean norm term. Moreover, the objective function
is non-convex, so the problem has innumerable local minima. For solving the problem
(3) by using the FE technique it is only necessary to use the function θ(u, γ ) and to
define u = ‖xi − x j‖:

minimize f (x) =
∑

(i, j)∈E

(θ(‖xi − x j‖, γ )− ai j )
2. (4)

Beside its smoothing properties the function θ also has the important convexification
power. Xavier (2003) shows the following theoretical result:
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Proposition 1 There is a value γ̄ , such as, for all values γ > γ̄ , the Hessian matrix
∇2 f (x) of the smoothed function will be positive definite.

Souza (2010) and Souza et al. (2011) considers an alternative formulation, where
the distances ‖xi − x j‖ must be inside given intervals [li, j , ui, j ] :

minimize f (x)=
∑

(i, j)∈E

max
[
(li j −‖xi −x j‖), 0

] +
∑

(i, j)∈E

max
[
(‖xi −x j ‖−ui j ), 0

]
.

By using function φ(u, τ ) =
(

u + √
u2 + τ 2

)
/2 in the place of function

max(0, u), and by using function θ(u, γ ) in the place of the Euclidean distance
u = ‖xi − x j‖, it is possible to obtain the smooth formulation:

minimize fs(x) =
∑

(i, j)∈E

φ
(
li j − θ(‖xi − x j‖, γ ), τ

)

+
∑

(i, j)∈E

φ
(
θ

(‖xi − x j‖ − ui j , γ
)
, τ

)
.

Souza (2010) and Souza et al. (2011) extends the previous theoretical result of
Proposition 1 showing the convexification of the above problem for all values γ >
max(i, j)∈E ui j .

In order to illustrate the computational properties of the Flying Elephants method
in this overview , we took the traditional lattice problem originally proposed by Moré
and Wu (1995). This instance is a synthetic problem, where the knots are located on
the intersection of s planes that cut a cube in the three principal directions in equal
intervals.

Following the notation adopted by Moré and Wu , the knot positions are refereed
by their coordinates indexes {(i1, i2, i3), 0 ≤ i1 ≤ s, 0 ≤ i2 ≤ s, 0 ≤ i3 ≤ s}. The
relative position i of the knot xi is given by the rule i = 1 + x1 + si2 + s2i3. The
distances ai j associated to the arcs (i, j) are exactly given by ai j =‖ xi − x j ‖2 for
each arc (i, j) ∈ S, where S = {(i, j) || i − j |< s2.} The set of the m = s3 knots is
represented by x = (x1, . . . , xm) ∈ R

3s3
. So, the problem has n = 3s3 components

and p = s5 + s3 + s arcs.
The numerical experiments have been carried out on a Intel Core i7-2620M Win-

dows Notebook with 2.70 GHz and 8 GB RAM. The columns of Table 1 show the
number of splits of the cube (s), the number of variables of the problem (m = 3s3),

the occurrences of correct solutions obtained in 10 tentative solutions (Occur.), the
average value of the correct solutions fF E Aver and the mean CPU time (T ime), given
in seconds, associated to 10 tentative solutions.

This lattice instance considered is a synthetic problem which global solution f ∗
assumes a value equal zero, f ∗ = 0. So, the small values exhibited in the column
fF E Aver of Table 1 indicate the robustness of the FE approach, from cases s = 4 to
s = 20, the last one with 3,119,800 arcs. Hoai and Tao (2000) proposed an approach for
solving this problem based on difference of convex functions optimization algorithms
and exhibits similar results, but only up to s = 16.
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Table 1 Distance geometry problem—Moré-Wu Lattice Instance

s n = 3s3 Occur. fF E Aver TMean s n = 3s3 Occur. fF E Aver TMean

3 81 0 – 0.1 12 5184 8 0.15E-1 143

4 192 6 0.27E-6 0.7 13 6591 7 0.32E-1 222

5 375 8 0.29E-5 2.8 14 8232 8 0.18E-1 380

6 648 8 0.19E-4 7.6 15 10125 6 0.65E-1 543

7 1029 5 0.16E-4 19 16 12288 7 0.42E-1 835

8 1536 8 0.29E-3 45 17 14739 6 0.16E0 1270

9 2187 6 0.86E-3 97 18 17496 7 0.21E0 1853

10 3000 7 0.95E-3 45 19 20577 8 0.24E0 2335

11 3993 6 0.17E-2 81 20 24000 8 0.59E0 3187

4 Covering problems

Let S be a finite region in �2. A set of q figures constitutes a covering of order 1 of
S if each point s ∈ S belongs to at least one figure. Coverages of a higher order can
be defined in a similar manner. Problems inherent to the covering of �2 regions by
circles, of �3 regions by spheres, and even regions in higher dimensional spaces have
been the object of research for many decades. We consider the special case of covering
a finite plane domain S optimally by a given number q of circles. We first discretize
the domain S into a finite set of m points s j , j = 1, . . . ,m. Let xi , i = 1, . . . , q be
the centres of the circles that must cover this set of points.

The optimal placing of the centres must provide the best-quality covering, that is, it
must minimize the most critical covering. If x ∈ �2q denotes the set of all placements
xi , i = 1, . . . , q and x∗ denotes an optimal placement, the covering problem assumes
a min − max − min form:

x∗ ∈ argmin
x∈�2q

max
j=1,...,m

min
i=1,...,q

‖s j − xi‖2. (5)

By defining z as the diameter of the circles, the above problem can be written on
the equivalent form:

minimize z

subject to z j = min
i=1,...,q

‖v j − xi‖2, j = 1, . . . ,m,

z ≥ z j , j = 1, . . . ,m. (6)

By performing a relaxation of problem (6) we obtain the problem:

minimize z

subject to z j − ‖v j − xi‖2 ≤ 0, j = 1, . . . ,m, i = 1, . . . , q,

z ≥ z j , j = 1, . . . ,m. (7)
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By using the auxiliary function performing ψ(u) = max(0, u) and performing
ε > 0 perturbation we obtain the problem:

minimize z

subject to
q∑

i=1

ψ(z j − ‖v j − xi‖2 ) ≥ ε, j = 1, . . . ,m,

z ≥ z j , j = 1, . . . ,m. (8)

By considering the second set of constraints of problem (8), we can greatly reduce
the dimension of the problem:

minimize z

subject to
q∑

i=1

ψ(z − ‖v j − xi‖2 ) ≥ ε, j = 1, . . . ,m. (9)

The FE approach uses the smooth function φ in the place function ψ. So, after
the described set of steps, the original three-level strongly non-differentiable min −
max − min problem can be transformed in a one-level completely smooth one:

minimize z

subject to
q∑

i=1

φ(z − ‖s j − xi‖2, τ ) ≥ ε, j = 1, . . . ,m. (10)

Just as in other smoothing methods, the solution to the covering problem by the FE
approach is obtained by resolving an infinite sequence of constrained minimization
subproblems. So, the algorithm causes τ and ε approach 0, so the constraints of the
subproblems it solves, given as in (10), tend to those of (9).

In order to show the computational properties of the Flying Elephants method, we
reproduce some results originally presented in Xavier and Fernandes Oliveira (2005).
Figure 3 depicts the solutions of three covering problems: Brazil (5 circles), The
Netherlands (5 circles) and state of New York (7 circles). The number of discretization
points were, respectively, 6620, 9220 and 7225. It is impossible to find more than a
few works presenting computational results with similar quality to those obtained by
FE approach. We quote Wei (2008).

5 Clustering problems

Let S = {s1, . . . , sm} denote a set of m patterns or observations from an Euclidean
n-space, to be clustered into a given number q of disjoint clusters. To formulate the
original clustering problem as a min − sum − min problem, we proceed as follows.
Let xi , i = 1, . . . , q be the centroids of the clusters, where each xi ∈ �n . Given a
point s j of S, we initially calculate the Euclidean distance from s j to the nearest center.
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Fig. 3 Coverages of Brazil, Netherlands and the state of New York

This is given by z j = mini=1,...,q ‖s j − xi‖2. The most frequent measurement of the
quality of a clustering associated to a specific position of q centroids is provided by
the minimum sum of the squares (MSSC) of these distances:

minimize
m∑

j=1

z2
j

subject to z j = min
i=1,...,q

‖s j − xi‖2, j = 1, . . . ,m. (11)

By performing a relaxation of problem (11) followed by an ε > 0 perturbation, in
a similar way to the procedures applied to the covering problem presented in the last
section, we obtain the problem:

minimize
m∑

j=1

z2
j

subject to
q∑

i=1

ψ(z j − ‖s j − xi‖2) ≥ ε , j = 1, . . . ,m. (12)

Since z j ≥ 0, j = 1, . . . ,m, the objective function minimization process will
work for reducing these values to the utmost. On the other hand, given any set of
centroids xi , i = 1, . . . , q, due to property (c) of the hyperbolic smoothing function
φ, the constraints of problem (10) are a monotonically increasing function in z j . So,
these constraints will certainly be active and problem (10) will finally be equivalent
to problem:

minimize
m∑

j=1

z2
j

subject to h j (z j , x) =
q∑

i=1

φ(z j − θ(s j , xi , γ ), τ )− ε = 0, j = 1, . . . ,m. (13)

The dimension of the variable domain space of problem (13) is (nq + m). As, in
general, the value of the parameter m, the cardinality of the set S of the observations
s j , is large, problem (13) has a large number of variables. However, it has a separable
structure, because each variable z j appears only in one equality constraint h j (z j , x).

123



Flying elephants

Therefore, as the partial derivative of h(z j , x) with respect to z j , j = 1, . . . ,m is not
equal to zero, it is possible to use the Implicit Function Theorem to calculate each
component z j , j = 1, . . . ,m as a function of the centroid variables xi , i = 1, . . . , q.
In this way, the unconstrained problem

minimize f (x) =
m∑

j=1

z j (x)
2 (14)

is obtained, where each z j (x) results from the calculation of a zero of each equation

h j (z j , x) =
q∑

i=1

φ(z j − θ(s j , xi , γ ), τ )− ε = 0, j = 1, . . . ,m. (15)

Again, due to the Implicit Function Theorem, the functions z j (x)have all derivatives
with respect to the variables xi , i = 1, . . . , q, and therefore it is possible to calculate
the gradient of the objective function of problem (14),

∇ f (x) =
m∑

j=1

2z j (x)∇z j (x), (16)

where

∇z j (x) = −∇h j (z j , x)/
∂h j (z j , x)

∂z j
, (17)

while ∇h j (z j , x) and ∂h j (z j , x)/∂z j are obtained from Eq. (15) and from definitions
of function φ(y, τ ) and function θ(s j , xi , γ ).

Xavier (2010) introduces the use of the FE approach for solving the MSSC problem.
The computational results show a performance with robustness, efficiency and consis-
tency, as well as with the capacity to solve large instances. Xavier and Xavier (2011)
introduce a pruning scheme which speeds up the performance of the FE approach up to
500 times maintaining the same robustness. Bagirov et al. (2012) propose an algorithm
which is based on the combination of the FE approach, without the pruning scheme,
and an incremental approach to get a good starting point. This paper focuses on the
solution of the largest clustering instances presented in the literature. A comparison
with other two top algorithms, k-means like, demonstrates that the proposed algorithm
by using the FE approach is more accurate.

Below we present a new computational experiment in order to demonstrate the
performance of the FE method and, in particular, to show its capacity for solving
very large clustering problems. We generate a synthetic data set with m = 5000000
observations in space with n = 10 dimensions. The observations were generated as
random perturbations to 10 previously known centres. The numerical experiments
have been carried out on a Intel Core i7-2620M Windows Notebook with 2.70 GHz
and 8 GB RAM.

Table 2 presents a synthesis of the computational results. We vary the number
of clusters q = 2, . . . , 10 and for each number of clusters, ten different randomly
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Table 2 Clustering 5,000,000 Synthetic Observations with n = 10 Dimensions

q fF EBest Occur. EMean TMean

2 0.456807E7 3 0.94 16.12

3 0.373567E7 1 1.21 24.69

4 0.323058E7 1 0.91 32.90

5 0.274135E7 1 0.09 26.06

6 0.248541E7 1 0.04 36.55

7 0.222897E7 1 0.19 43.24

8 0.197977E7 2 0.12 45.38

9 0.173581E7 2 0.10 42.78

10 0.149703E7 10 0.00 32.98

c 0.150000E7 − − −

chosen starting points were used. The columns show the number of clusters (q), the
best solution produced by the FE approach fF EBest , the number of occurrences of the
best solution (Occur.), the average deviation of the 10 solutions in relation to the
best solution obtained (EMean) and the CPU mean time given in seconds (TMean)

associated to 10 tentative solutions. The last row of the table, represented by character
c for center, informs the sum of the variances of the 10 synthetic groups, which is
greater than the value obtained by the FE approach for the case q = 10. This result
demonstrates unequivocally the robustness of the new method.

6 The Fermat–Weber problem

Let S = {s1, . . . , sm} denote a set of m cities or locations in an Euclidean planar space
�2,with a corresponding set of demands W = {w1, . . . , wm}, to be attended by a given
number of q facilities. To formulate the Fermat–Weber problem as a min−sum−min
problem, we proceed as follows. Let xi , i = 1, . . . , q be the locations of facilities or
centroids, xi ∈ �2. Given a city s j ∈ S, we initially calculate the Euclidean distance
from s j to the nearest facility or centroid: z j = mini=1,...,q ‖s j − xi‖2. The Fermat–
Weber problem considers the placing of q facilities in order to minimize the total
transportation cost that is one of most important problems in the location sciences
field:

minimize
m∑

j=1

w j z j

subject to z j = min
i=1,...,q

‖s j − xi‖2, j = 1, . . . ,m. (18)

By performing the same procedures applied to the clustering problems shown in
the previous section, we obtain a completely differentiable constrained problem:

123



Flying elephants

minimize
m∑

j=1

w j z j

subject to h j (z j , x) =
q∑

i=1

φ(z j − θ(s j , xi , γ ), τ )− ε = 0, j = 1, . . . ,m, (19)

where, as usual, x denotes the set of facilities or centroids xi , i = 1, . . . , q.
Now, it is possible to use the Implicit Function Theorem to calculate each component

z j , j = 1, . . . ,m as a function of the centroid variables xi , i = 1, . . . , q. This way,
the unconstrained problem

minimize f (x) =
m∑

j=1

w j z j (x) (20)

is obtained, where each z j (x) results from the calculation of the single zero of each
equation below, since each term φ above strictly increases together with variable z j :

h j (z j , x) =
q∑

i=1

φ(z j − θ(s j , xi , γ ), τ )− ε = 0, j = 1, . . . ,m. (21)

Again, due to the Implicit Function Theorem, the functions z j (x)have all derivatives
with respect to the variables xi , i = 1, . . . , q, and therefore it is possible to calculate
the gradient of the objective function (20):

∇ f (x) =
m∑

j=1

w j∇z j (x), (22)

where

∇z j (x) = −∇h j (z j , x)
/∂h j (z j , x)

∂z j
. (23)

This way, it is easy to solve problem (20) by making use of any method based
on first or second order derivative information. Finally, it must be emphasized that
problem (20) is defined on a (2q)−dimensional space, so it is a small problem, since
the number of clusters, q, is, in general, very small in real applications.

Xavier (2012) introduces the use of the FE approach to solve the Fermat–Weber
problem. The computational experiments with the new approach show a performance
similar to the most efficient algorithms for solving problems up to 1,060 cities, the
previous largest instance, see Brimberg et al. (2000) and Plastino et al. (2011). Xavier
(2012) and Xavier et al. (2014a) present also results for problems never considered
in the literature, with up to 85,900 cities, a new superior bound size about 80 times
larger.

We reproduce in Table 3 the results of the experiment for the new largest instance
Pla85900. Numerical experiments have been carried out on a PC Intel Pentium T4300,
2.1 GHz CPU with 4GB RAM, Windows 7, 32 bits.
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Table 3 Fermat–Weber Problem—Pla85900 Instance

q fF EBest Occur. EMean T imeMean

2 0.163625E11 6 0.27 25.33

3 0.127835E11 10 0.00 50.91

4 0.108063E11 10 0.00 74.62

5 0.984539E10 7 0.11 121.02

6 0.902515E10 10 0.00 156.63

7 0.836416E10 3 0.18 206.71

8 0.778239E10 10 0.00 260.89

9 0.737264E10 9 0.09 317.09

10 0.704126E10 1 0.19 381.33

15 0.576935E10 10 0.00 937.84

20 0.502191E10 1 0.13 1690.06

30 0.411982E10 2 0.08 4062.92

40 0.358238E10 1 0.11 8169.64

Tables 3 contains: the number of facilities q; the best objective function value
produced by the FE method fF EBest by using a set of random starting points; the
number of occurrences of the best solution Occur.; the percent deviation value of the
set of 10 solutions related to the best value produced by the FE method EMean and the
mean CPU time given in seconds T imeMean . The small values in the column EMean

show unequivocally the consistency of the FE algorithm. As there is no recorded result
for this instance, the obtained values for the objective function and for the CPU time
are a challenge for future research.

7 Hub location problems

The continuous p-hub median problem is a location problem which requires finding
a set of p hubs in a planar region, in order to minimize a particular transportation cost
function. To formulate this problem, we proceed as follows. Let S = {s1, . . . , sm}
denote a set of m cities or consumer points in a planar region. Let w jl be the demand
between two cities j and l. Let xi , i = 1, . . . , p be the locations of the hubs, where
each xi ∈ �2.

Concerning the hub-and-spoke problem under consideration, the connections
between each pair of points j and l have always three parts: from the origin point
j to a first hub a, from a to a second hub b and from b to destination point l. Multiple
allocation is permitted, meaning that any given point can be served by one or more
hubs. The first and the second hubs can be coincident (i.e., a = b), meaning that a
unique hub is used to connect the origin point j and the destination point l. Figure 4
shows the p2 possible connections between two cities. As shown, the hubs a and b
can be the same.
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Fig. 4 The set of connections
between point j and point l

The unitary cost associated to a general connection ( j, a, b, l) is equal to a weighted
distance obtained by the sum of three Euclidian distances, with a reduction factor for
the second part between hubs:

v jabl = ‖s j − xa‖2 + α‖xa − xb‖2 + ‖xb − sl‖2, (24)

where α is the reduction factor: 0 ≤ α ≤ 1.
The unitary cost from the origin city j to the destination city l is chosen as the

minimum value for all connections:

z jl = min
a,b=1,...,p

v jabl = min
a,b=1,...,p

{‖s j − xa‖2 + α‖xa − xb‖2 + ‖xb − sl‖2
}
.

(25)
For α = 0, the connections with minimum values will be those with the closest

assignments, which leads to the solutions of the Fermat–Weber problem.
The p-hub median problem corresponds to minimizing the total cost between all

pairs of cities taking the unitary cost value for all connections:

minimize
m∑

j=1

m∑

l=1

w jl z jl

subject to z jl = min
a,b=1,...,p

v jabl , j, l = 1, . . . ,m. (26)

By performing the same procedures applied to the clustering and Fermat–Weber
problems shown in previous sections, we obtain a completely differentiable con-
strained problem:

minimize
m∑

j=1

m∑

l=1

w jl z jl

subject to h jl(z jl , x) =
p∑

a=1

p∑

b=1

φ(z jl − (θ(s j , xa, γ )

+αθ(xa, xb, γ )+ θ(xb, sl , γ )), τ )− ε = 0, j, l = 1, . . . ,m. (27)

Now, it is possible to use once more the Implicit Function Theorem to calculate
each component z jl , j, l = 1, . . . ,m as a function of the centroid variables xi , i =
1, . . . , q. So, the unconstrained problem
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minimize f (x) =
m∑

j=1

m∑

l=1

w jl z jl(x) (28)

is obtained, where each z jl(x) results from the calculation of a zero of each equation

h jl(z jl , x) =
p∑

a=1

p∑

b=1

φ(z jl − (θ(s j , xa, γ )

+αθ(xa, xb, γ )+ θ(xb, sl , γ )), τ ) − ε = 0, j, l = 1, . . . ,m. (29)

Again, due to the Implicit Function Theorem, the functions z jl(x) have all deriv-
atives with respect to the variables xi , i = 1, . . . , p, and therefore it is possible to
calculate the gradient of the objective function (28):

∇ f (x) =
m∑

j=1

m∑

l=1

w jl∇z jl(x), (30)

where

∇z jl(x) = −∇h jl(z jl , x)

/
∂h jl(z jl , x)

∂z jl
, (31)

while ∇h jl(z jl , x) and ∂h jl(z jl , x)/∂z jl are directly obtained from Eqs. (1), (2) and
(29).

This way, it is easy to solve problem (28) by making use of any method based on
first order derivative information. Finally, it must be emphasized that problem (28) is
defined on a (2p)−dimensional space, so it is a small problem, since the number of
hubs, p, is small, in general, for real world applications.

Gesteira (2012) and Xavier et al. (2014b) introduce the use of the FE approach to
solve the continuous hub location problem. They present computational results for
instances up to 1,000 cities or about 500,000 different origin-destination pairs. The
number of hubs reaches the value p = 5, which implies 12.5 million different path
connections jabl, see Fig. 2. Contreras et al. (2011) consider a discrete hub location
problem and solve problems up to 500 cities. To the best knowledge of these authors:
the new instances are by far the largest and most difficult ever solved for any type of
hub location problem.

Below, in Table 4, we reproduce the computational results obtained for solving
the largest instance. The numerical experiments have been carried out on a PC Intel
Celeron with a 2.7 GHz CPU and 512 MB RAM. The first column presents the specified
number of hubs (p). The second column presents the best objective function value
produced by the FE method in 10 attempts fF EBest . The next three columns present the
number of occurrences of the best solution (Occur.), the percent average deviation
of the T solutions in relation to the best solution obtained (EMean) and the CPU
mean time given in seconds (TMean). The small values in the column EMean show
unequivocally the consistency of the FE algorithm. As there is no recorded result for
this instance the obtained values for objective function and CPU time are a challenge
for future research.
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Table 4 Hub location
problem—dsj1000 TSPLIB
instance (α = 0.5)

p fF EBest Occur. EMean TMean

2 0.342083E12 10 0.00 376.66

3 0.285747E12 10 0.00 1296.32

4 0.263992E12 9 0.07 3754.33

5 0.248652E12 4 0.35 8234.88

8 Conclusions

In short, computational experiments for all related problems obtained results that
exhibited a high level of performance of the FE approach according to the different
criteria of consistency, robustness and efficiency. The robustness, consistency and effi-
ciency performances can be attributed to the complete differentiability of the approach.
Based on the success of these previous experiences, we believe that the FE methodol-
ogy can also be used for solving a broad class of non-smooth problems with similar
characteristics, like those contemplated in the seminal survey written by Rubinov
(2006).
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