
Noname manuscript No.
(will be inserted by the editor)

Derivative-free optimization: A review of algorithms and

comparison of software implementations

Luis Miguel Rios · Nikolaos V. Sahinidis

Received: date / Accepted: date

Abstract This paper addresses the solution of bound-constrained optimiza-
tion problems using algorithms that require only the availability of objective
function values but no derivative information. We refer to these algorithms
as derivative-free algorithms. Fueled by a growing number of applications in
science and engineering, the development of derivative-free optimization algo-
rithms has long been studied, and it has found renewed interest in recent time.
Along with many derivative-free algorithms, many software implementations
have also appeared. The paper presents a review of derivative-free algorithms,
followed by a systematic comparison of 22 related implementations using a test
set of 502 problems. The test bed includes convex and nonconvex problems,
smooth as well as nonsmooth problems. The algorithms were tested under
the same conditions and ranked under several criteria, including their ability
to find near-global solutions for nonconvex problems, improve a given starting
point, and refine a near-optimal solution. A total of 112,448 problem instances
were solved. We find that the ability of all these solvers to obtain good solutions
diminishes with increasing problem size. For the problems used in this study,
TOMLAB/MULTIMIN, TOMLAB/GLCCLUSTER, MCS and TOMLAB/LGO are better, on
average, than other derivative-free solvers in terms of solution quality within
2500 function evaluations. These global solvers outperform local solvers even
for convex problems. Finally, TOMLAB/OQNLP, NEWUOA, and TOMLAB/MULTIMIN

show superior performance in terms of refining a near-optimal solution.

Keywords derivative-free algorithms · direct search methods · surrogate
models

Luis Miguel Rios
Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213,
e-mail: lmrios@gmail.com.

Nikolaos V. Sahinidis
National Energy Technology Laboratory, Department of Chemical Engineering, Carnegie
Mellon University, Pittsburgh, PA, 15213, e-mail: sahinidis@cmu.edu. Address all corre-
spondence to this author.

2

1 Introduction

The problem addressed in this paper is the optimization of a deterministic
function f : Rn → R over a domain of interest that possibly includes lower
and upper bounds on the problem variables. We assume that the derivative of
f is neither symbolically nor numerically available, and that bounds, such as
Lipschitz constants, for the derivative of f are also unavailable.

The problem is of interest when derivative information is unavailable, unre-
liable, or impractical to obtain, for instance when f is expensive to evaluate or
somewhat noisy, which renders most methods based on finite differences of lit-
tle or no use [79,140]. We refer to this problem as derivative-free optimization.
We further refer to any algorithm applied to this problem as a derivative-free
algorithm, even if the algorithm involves the computation of derivatives for
functions other than f .

Derivative-free optimization is an area of long history and current rapid
growth, fueled by a growing number of applications that range from science
problems [42,52,143,4] to medical problems [103,90] to engineering design and
facility location problems [49,2,15,57,91,98,92,10,48,54].

The development of derivative-free algorithms dates back to the works of
Spendley et al. [132] and Nelder and Mead [99] with their simplex-based
algorithms. Recent works on the subject have led to significant progress by
providing convergence proofs [134,31,76,85,88,80,9,5,34], incorporating the
use of surrogate models [22,127,131,24], and offering the first textbook that
is exclusively devoted to this topic [35]. Concurrent with the development
of algorithms, software implementations for this class of optimization prob-
lems have resulted in a wealth of software packages, including BOBYQA [115],
CMA-ES [55], four COLINY solvers [124], DFO [125], glcCluster [60, pp. 109–111],
HOPSPACK [108], IMFIL [74], LGO [105], MCS [101], multiMin [60, pp. 148-151],
NEWUOA [114], NOMAD [6], OQNLP [62], PSWARM [137,138], SID-PSM [41,40], and
SNOBFIT [66].

Mongeau et al. [96] performed a comparison of derivative-free solvers in
1998 by considering six solvers over a set of eleven test problems. Since the
time of that comparison, the number of available derivative-free optimization
solvers has more than quadrupled. Other comparisons, such as [33,65,53,11,
38,48,138,97,67], are restricted to a few solvers related to the algorithms pro-
posed in these papers. In addition, these comparisons consider small sets of
test problems. There is currently no systematic comparison of the existing im-
plementations of derivative-free optimization algorithms on a large collection
of test problems. The primary purpose of the present paper is to provide such
a comparison, aiming at addressing the following questions:

– What is the quality of solutions obtained by current solvers for a given
limit on the number of allowable function evaluations? Does quality drop
significantly as problem size increases?

– Which solver is more likely to obtain global or near-global solutions for
nonconvex problems? What is the effect of a multi-start strategy on the
relative performance of solvers in this regard?

3

– Is there a subset of existing solvers that would suffice to solve a large frac-
tion of problems when all solvers are independently applied to all problems
of interest? Conversely, are there problems that can be solved by only one
or a few solvers?

– Given a starting near-optimal solution, which solver reaches the solution
fastest?

Before addressing these questions computationally, the paper begins by
presenting a review of the underlying theory and motivational ideas of the
algorithms. We classify algorithms developed for this problem as direct and
model-based . Direct algorithms determine search directions by computing val-
ues of the function f directly, whereas model-based algorithms construct and
utilize a surrogate model of f to guide the search process. We further clas-
sify algorithms as local or global , with the latter having the ability to refine
the search domain arbitrarily. Finally, we classify algorithms as stochastic or
deterministic, depending upon whether they require random search steps or
not.

Readers familiar with the subject matter of this paper may have noticed
that there exists literature that reserves the term derivative-free algorithms
only for what we refer to as model-based algorithms in the current paper. In
addition, what we refer to as derivative-free optimization is often also referred
to as optimization over black boxes. The literature on these terms is often
inconsistent and confusing (cf. [79] and discussion therein).

Local search algorithms are reviewed in Section 2. The presentation in-
cludes direct and model-based strategies. Global search algorithms are dis-
cussed in Section 3, including deterministic as well as stochastic approaches.
Section 4 provides a brief historical overview and overall assessment of the
algorithmic state-of-the-art in this area. Leading software implementations of
derivative-free algorithms are discussed in Section 5. The discussion includes
software characteristics, requirements, and types of problems handled. Ex-
tensive computational experience with these codes is presented in Sections 6
and 7. A total of 502 test problems were used, including 78 smooth convex,
161 nonsmooth convex, 245 smooth nonconvex, and 18 nonsmooth nonconvex
problems. These problems were used to test 22 solvers using the same starting
points and bounding boxes. During the course of the computational work for
this paper, we made test problems and results available to the software devel-
opers and asked them to provide us with a set of options of their choice. Many
of them responded and even decided to change the default settings in their
software thereafter. In an effort to encourage developers to revise and improve
their software, we shared our computational results with them over several
rounds. Between each round, several developers provided improved versions
of their implementations. At the end of this process, we tested their software
against an additional collection of problems that had not been seen by devel-
opers in order to confirm that the process had not led to overtraining of the
software on our test problem collection. Conclusions from this entire study are
drawn in Section 8.

4

2 Local search methods

2.1 Direct local search methods

Hooke and Jeeves [64] describe direct search as the sequential examination of
trial solutions generated by a certain strategy. Classical direct search methods
did not come with proofs of termination or convergence to stationary points.
However, recent papers starting with [134,135] have proved convergence to
stationary points, among other properties. These old methods remain popular
due to their simplicity, flexibility, and reliability. We next describe specific
direct search methods that are local in nature.

2.1.1 Nelder-Mead simplex algorithm

The Nelder-Mead algorithm introduced in [99] starts with a set of points that
form a simplex. In each iteration, the objective function values at the corner
points of the simplex determine the worst corner point. The algorithm at-
tempts to replace the worst point by introducing a new vertex in a way that
results in a new simplex. Candidate replacement points are obtained by trans-
forming the worst vertex through a number of operations about the centroid
of the current simplex: reflection, expansion, inside and outside contractions.
McKinnon [94] has established analytically that convergence of the Nelder-
Mead algorithm can occur to a point where the gradient of the objective func-
tion is nonzero, even when the function is convex and twice continuously dif-
ferentiable. To prevent stagnation, Kelley [75] proposed to enforce a sufficient
decrease condition determined by an approximation of the gradient. If stagna-
tion is observed, the algorithm restarts from a different simplex. Tseng [136]
proposed a globally convergent simplex-based search method that considers
an expanded set of candidate replacement points. Other modifications of the
Nelder-Mead algorithm are presented in [35].

2.1.2 Generalized pattern search (GPS) and generating set search (GSS)
methods

Torczon [135] introduced generalized pattern search methods (GPS) for un-
constrained optimization. GPS generalizes direct search methods including the
Hooke and Jeeves [64] algorithm. At the beginning of a new iteration, GPS
searches by exploratory moves. The current iterate defines a set of points that
form a pattern, determined by a step and a generating matrix that spans Rn.

Further generalizing GPS, Kolda, Lewis and Torczon [79] coined the term
GSS in order to describe, unify, and analyze direct search methods, including
algorithms that apply to constrained problems. Each iteration k of GSS meth-
ods consists of two basic steps. The search step is performed first over a finite
set of search directions Hk generated by some, possibly heuristic, strategy that
aims to improve the current iterate but may not guarantee convergence. If the
search step fails to produce a better point, GSS methods continue with the poll

5

step, which is associated with a generating set Gk that spans positively R
n.

Generating sets are usually positive bases, with a cardinality between n + 1
to 2n. Assuming f is smooth, a generating set contains at least one descent
direction of f at a non-stationary point in the domain of definition of f .

Given G = {d(1), . . . , d(p)} with p ≥ n+ 1 and d(i) ∈ R
n, the function f is

evaluated at a set of trial points Pk = {xk +△kd : d ∈ Gk}, where △k is the
step length. An iteration is successful if there exists y ∈ Pk such that f(y) <
f(xk) − ρ(△k), where ρ is a forcing function. The opportunistic poll strategy
proceeds to the next iteration upon finding a point y, while the complete
poll strategy evaluates all points in Pk and assigns y = argminx∈Pk

f(x).
Successful iterations update the iterate xk+1 to y and possibly increase the
step length △k+1 to φk△k, with φk ≥ 1. Unsuccessful iterations maintain the
same iterate, i.e., xk+1 = xk, and reduce the step length △k+1 to θk△k, with
0 < θk < 1. The forcing function ρ is included in order to impose a sufficient
decrease condition and is required to be a continuous decreasing function with
limt→0 ρ(t)/t = 0. Alternatively, the set Pk can be generated using integer
lattices [135]. In the latter case, the iteration is successful if a point y satisfies
simple decrease, i.e., f(y) < f(xk).

Lewis and Torczon [83] extended pattern search methods to problems with
bound constraints by including axis directions in the set of poll directions.
Lewis and Torczon [84] further extended pattern search methods to linearly
constrained problems by forcing the generating set to span a tangent cone
TΩ(xk, ǫ), which restricts the tangent vectors to satisfy all constraints within
an ǫ-neighborhood from xk.

Under mild conditions, [135] showed convergence of GSS methods to sta-
tionary points, which, could be local minima, local maxima, or even saddle
points.

Mesh adaptive direct search (MADS) methods The MADS methods
(Audet and Dennis [11]) modified the poll step of GPS algorithms to consider a
variable set of poll directions whose union across all iterations is asymptotically
dense in R

n. MADS generates the poll points using two parameters: a poll size
parameter, which restricts the region from which points can be selected, and
a mesh size parameter, which defines a grid inside the region limited by the
poll size parameter. MADS incorporates dynamic ordering, giving precedence
to previously successful poll directions. Audet and Dennis [11] first proposed
random generation of poll directions for each iteration, and Audet et al. [8]
proposed a deterministic way for generating orthogonal directions.

Abramson and Audet [5] showed convergence of the MADS method to
second-order stationary points under the assumption that f is continuously
differentiable with Lipschitz derivatives near the limit point. Under additional
assumptions (f twice strictly differentiable near the limit point), MADS was
shown to converge to a local minimizer with probability 1. A number of prob-
lems for which GPS stagnates and MADS converges to an optimal solution
are presented in [11]. Some examples were presented in [5] that show how GPS

6

methods stall at saddle points, while MADS escapes and converges to a local
minimum.

MADS handles general constraints by the extreme barrier approach [11],
which rejects infeasible trial points from consideration, or by the progressive
barrier approach [12], which allows infeasible trial points within a decreasing
infeasibility threshold.

Pattern search methods using simplex gradients Custódio and Vi-
cente [40] proposed to enhance the poll step by giving preference to directions
that are closest to the negative of the simplex gradient. Simplex gradients
are an approximation to the real gradient and are calculated out of a simplex
defined by previously evaluated points.

2.2 Local model-based search algorithms

The availability of a high-fidelity surrogate model permits one to exploit its un-
derlying properties to guide the search in a intelligent way. Properties such as
the gradient and higher order derivative information, as well as the probability
distribution function of the surrogate model are used. Since a high-fidelity sur-
rogate model is typically unavailable for a given problem, these methods start
by sampling the search space and building an initial surrogate model. The
methods then proceed iteratively to optimize the surrogate model, evaluate
the solution point, and update the surrogate model.

2.2.1 Trust-region methods

Trust-region methods use a surrogate model that is usually smooth, easy to
evaluate, and presumed to be accurate in a neighborhood (trust region) about
the current iterate. Powell [109] proposed to use a linear model of the objec-
tive within a trust-region method. The algorithm considered a monotonically
decreasing radius parameter and included iterations that maintained geomet-
ric conditions of the interpolation points. Linear models are practical since
they only require O(n) interpolation points, albeit at the cost of not captur-
ing the curvature of the underlying function. Powell [112] and Conn et al. [31,
32] proposed to use a quadratic model of the form:

qk(xk + s) = f(xk) + 〈gk, s〉+
1

2
〈s,Hks〉

where, at iteration k, xk is the current iterate, gk ∈ R
n, and Hk is a symmetric

matrix of dimension n. Rather than using derivative information, gk and Hk

are estimated by requiring qk to interpolate a set Y of sample points: qk(x
(i)) =

f(x(i)) for i = 1, . . . , p. Unless conditions are imposed on the elements of gk
and Hk, at least (n + 1)(n + 2)/2 points are needed to determine gk and Hk

uniquely. Let x∗ denote a minimizer of qk within the trust region and define

7

the ratio ρk = (f(xk)− f(x∗)) / (qk(xk)− qk(x
∗)). If ρk is greater than a user-

defined threshold, x∗ replaces a point in Y and the trust region is increased.
Otherwise, if the geometry of the set Y is adequate, the trust-region radius is
reduced, while, if the geometry is not adequate, a point in the set is replaced
by another that improves the poisedness of the set. The algorithm terminates
when the trust-region radius drops below a given tolerance.

Powell [113] proposed an algorithm that uses a quadratic model relying on
fewer than (n + 1)(n + 2)/2 interpolation points. The remaining degrees of
freedom in the interpolation are determined by minimizing the change to the
Hessian of the surrogate model between two consecutive iterations.

2.2.2 Implicit filtering

In addition to, or instead of developing a surrogate of f , one may develop
a surrogate of the gradient of f and use it to expedite the search. Implicit
filtering [142,50] uses an approximation of the gradient to guide the search,
resembling the steepest descent method when the gradient is known. The ap-
proximation of the gradient at an iterate is based on forward or centered
differences, and the difference increment varies as the optimization progresses.
Forward differences require n function evaluations, whereas centered difference
gradients require 2n function evaluations over the set {x± sei : i = 1, . . . , n},
where x is the current iterate, s is the scale of the stencil, and ei are coor-
dinate unit vectors. As these points are distributed around the iterate, they
produce approximations less sensitive to noise than forward differences [50]. A
line search is then performed along the direction of the approximate gradient.
The candidate point is required to satisfy a minimum decrease condition of
the form f(x− δ∇sf(x))− f(x) < −αδ‖∇sf(x)‖

2, where δ is the step and α
is a parameter. The algorithm continues until no point satisfies the minimum
decrease condition, at which point the scale s is decreased. The implicit filter-
ing algorithm terminates when the approximate gradient is less than a certain
tolerance proportional to s.

3 Global search algorithms

3.1 Deterministic global search algorithms

3.1.1 Lipschitzian-based partitioning techniques

Lipschitzian-based methods construct and optimize a function that underes-
timates the original one. By constructing this underestimator in a piecewise
fashion, these methods provide possibilities for global, as opposed to only local,
optimization of the original problem. Let L > 0 denote a Lipschitz constant
of f . Then |f(a)− f(b)| ≤ L ‖ a− b ‖ for all a, b in the domain of f . Assum-
ing L is known, Shubert [129] proposed an algorithm for bound-constrained
problems. This algorithm evaluates the extreme points of the search space and

8

constructs linear underestimators by means of the Lipschitz constant. The al-
gorithm then proceeds to evaluate the minimum point of the underestimator
and construct a piecewise underestimator by partitioning the search space.

A straightforward implementation of Shubert’s algorithm for derivative-
free optimization problems has two major drawbacks: the Lipschitz constant
is unknown and the number of function evaluations increases exponentially,
as the number of extreme points of an n-dimensional hypercube is 2n. The
DIRECT algorithm and branch-and-bound search are two possible approaches
to address these challenges.

The DIRECT algorithm Jones et al. [72] proposed the DIRECT algo-
rithm (DIvide a hyperRECTangle), with two main ideas to extend Shubert’s
algorithm to derivative-free optimization problems. First, function values are
computed only at the center of an interval, instead of all extreme points. By
subdividing intervals into thirds, one of the resulting partition elements in-
herits the center of the initial interval, where the objective function value is
already known. The second main idea of the DIRECT algorithm is to select
from among current hyperrectangles one that (a) has the lowest objective func-
tion value for intervals of similar size and (b) is associate with a large potential
rate of decrease of the objective function value. The amount of potential de-
crease in the current objective function value represents a setable parameter
in this algorithm and can be used to balance local and global search; larger
values ensure that the algorithm is not local in its orientation.

In the absence of a Lipschitz constant, the DIRECT algorithm terminates
once the number of iterations reaches a predetermined limit. Under mild condi-
tions, Finkel and Kelley [47] proved that the sequence of best points generated
by the algorithm converges to a KKT point. Convergence was also established
for general constrained problems, using a barrier approach.

Branch-and-bound (BB) search BB sequentially partitions the search
space, and determines lower and upper bounds for the optimum. Partition
elements that are inferior are eliminated in the course of the search. Let
Ω = [xl, xu] be the region of interest and let x∗

Ω ∈ Ω be a global minimizer of
f in Ω. The availability of a Lipschitz constant L along with a set of sample
points Λ = {x(i), i = 1, . . . , p} ⊂ Ω provides lower and upper bounds:

max
i=1,...,p

{f(x(i))− Lδi} = f
Ω
≤ f(x∗

Ω) ≤ fΩ = min
i=1,...,p

f(x(i)),

where δi is a function of the distance of x(i) from the vertices of [xl, xu]. The
Lipschitz constant L is unknown but a lower bound L can be estimated from
the sampled objective function values:

L = max
i,j

|f(x(i))− f(x(j))|

‖x(i) − x(j)‖
≤ L, i, j = 1, . . . , p , i 6= j.

Due to the difficulty of obtaining deterministic upper bounds for L, statisti-
cal bounds relying on extreme order statistics were proposed in [106]. This

9

approach assumes samples are generated randomly from Ω and their corre-
sponding objective function values are random variables. Subset-specific es-
timates of L can be significantly smaller than the global L, thus providing
sharper lower bounds for the objective function as BB iterations proceed.

3.1.2 Multilevel coordinate search (MCS)

Like the DIRECT algorithm, MCS [65] partitions the search space into boxes
with an evaluated base point. Unlike the DIRECT algorithm, MCS allows base
points anywhere in the corresponding boxes. Boxes are divided with respect to
a single coordinate. The global-local search that is conducted is balanced by
a multilevel approach, according to which each box is assigned a level s that
is an increasing function of the number of times the box has been processed.
Boxes with level s = smax are considered too small to be further split.

At each iteration, MCS selects boxes with the lowest objective value for
each level value and marks them as candidates for splitting. Let nj be the
number of splits in coordinate j during the course of the algorithm. If s >
2n(minnj+1), open boxes are considered for splitting by rank, which prevents
having unexplored coordinates for boxes with high s values; in this case, the
splitting index k is chosen such that nk = minnj . Otherwise, open boxes
are considered for splitting by expected gain, which selects the splitting index
and coordinate value by optimizing a local separable quadratic model using
previously evaluated points. MCS with local search performs local searches
from boxes with level smax, provided that the corresponding base points are
not near previously investigated points. As smax approaches infinity, the base
points of MCS form a dense subset of the search space and MCS converges to
a global minimum [65].

3.2 Global model-based search algorithms

Similarly to local model-based algorithms described in Subsection 2.2, global
model-based approaches optimize a high-fidelity surrogate model, which is
evaluated and updated to guide the optimization of the real model. In this
context, the surrogate model is developed for the entire search space or subsets
that are dynamically refined through partitioning.

3.2.1 Response surface methods (RSMs)

These methods approximate an unknown function f by a response surface (or

metamodel) f̂ [16]. Any mismatch between f and f̂ is assumed to be caused
by model error and not because of noise in experimental measurements.

Response surfaces may be non-interpolating or interpolating [70]. The for-
mer are obtained by minimizing the sum of square deviations between f and
f̂ at a number of points, where measurements of f have been obtained. The
latter produce functions that pass through the sampled responses. A common

10

choice for non-interpolating surfaces are low-order polynomials, the parame-
ters of which are estimated by least squares regression on experimental designs.
Interpolating methods include kriging and radial basis functions. Independent
of the functions used, the quality of the predictor depends on selecting an
appropriate sampling technique [14].

The interpolating predictor at point x is of the form:

f̂(x) =

m
∑

i=1

αifi(x) +

p
∑

i=1

βiϕ
(

x− x(i)
)

,

where fi are polynomial functions, αi and βi are unknown coefficients to be
estimated, ϕ is a basis function, and x(i) ∈ R

n, i = 1, . . . , p, are sample points.
Basis functions include linear, cubic, thin plate splines, multiquadratic, and
kriging. These are discussed below in more detail.

Kriging Originally used for mining exploration models, kriging [93] models
a deterministic response as the realization of a stochastic process by means
of a kriging basis function. The interpolating model that uses a kriging basis
function is often referred to as a Design and Analysis of Computer Experiments
(DACE) stochastic model [122]:

f̂(x) = µ+

p
∑

i=1

bi exp

[

−

n
∑

h=1

θh

∣

∣

∣
xh − x

(i)
h

∣

∣

∣

ph

]

,

θh ≥ 0, ph ∈ [0, 2], h = 1, . . . , n.

Assuming f̂ is a random variable with known realizations f̂(x(i)), i = 1, . . . , p,
the parameters µ, bi, θh and ph are estimated by maximizing the likelihood
of the observed realizations. The parameters are dependent on sample point
information but independent of the candidate point x. Nearby points are as-
sumed to have highly correlated function values, thus generating a continuous
interpolating model. The weights θh and ph account for the importance and
the smoothness of the corresponding variables. The predictor f̂(x) is then
minimized over the entire domain.

Efficient global optimization (EGO) The EGO algorithm [126,73] starts
by performing a space-filling experimental design. Maximum likelihood esti-
mators for the DACE model are calculated and the model is then tested for
consistency and accuracy. A branch-and-bound algorithm is used to optimize
the expected improvement, E[I(x)], at the point x. This expected improve-

ment is defined as: E[I(x)] = E
[

max(fmin − f̂(x), 0)
]

, where fmin is the best

objective value known and f̂ is assumed to follow a normal distribution with
mean and standard deviation equal to the DACE predicted values. Although
the expected improvement function can be reduced to a closed-form expression
[73], it can be highly multimodal.

11

Radial basis functions Radial basis functions approximate f by consider-
ing an interpolating model based on radial functions. Powell [111] introduced
radial basis functions to derivative-free optimization.

Given a set of sample points, Gutmann [53] proposed to find a new point

x̄ such that the updated interpolant predictor f̂ satisfies f̂(x̄) = T for a target
value T . Assuming that smooth functions are more likely than “bumpy” func-
tions, x̄ is chosen to minimize a measure of “bumpiness” of f̂ . This approach
is similar to maximizing the probability of improvement [70], where x is cho-

sen to maximize the probability: Prob = Φ
[

(T − f̂(x))/s(x)
]

, where Φ is the

normal cumulative distribution function and s(x) is the standard deviation
predictor.

Various strategies that rely on radial basis functions have been proposed
and analyzed [103,118,63], as well as extended to constrained optimization [117].
The term “RBF methods” will be used in later sections to refer to global opti-
mization algorithms that minimize the radial-basis-functions-based interpolant
directly or minimize a measure of bumpiness.

Sequential design for optimization (SDO) Assuming that f̂(x) is a ran-
dom variable with standard deviation predictor s(x), the SDO algorithm [36]

proposes the minimization of the statistical lower bound of the function f̂(x∗)−
τs(x∗) for some τ ≥ 0.

3.2.2 Surrogate management framework (SMF)

Booker et al. [23] proposed a pattern search method that utilizes a surrogate
model. SMF involves a search step that uses points generated by the surrogate
model in order to produce potentially optimal points as well as improve the
accuracy of the surrogate model. The search step alternates between evaluating
candidate solution points and calibrating the surrogate model until no further
improvement occurs, at which point the algorithm switches to the poll step.

3.2.3 Optimization by branch-and-fit

Huyer and Neumaier [66] proposed an algorithm that combines surrogate mod-
els and randomization. Quadratic models are fitted around the incumbent,
whereas linear models are fitted around all other evaluated points. Candidate
points for evaluation are obtained by optimizing these models. Random points
are generated when the number of points at hand is insufficient to fit the
models. Additional points from unexplored areas are selected for evaluation.
The user provides a resolution vector that confines the search to its multiples,
thereby defining a grid of candidate points. Smaller resolution vectors result
in grids with more points.

12

3.3 Stochastic global search algorithms

This section presents approaches that rely on critical non-deterministic algo-
rithmic steps. Some of these algorithms occasionally allow intermediate moves
to lesser quality points than the solution currently at hand. The literature
on stochastic algorithms is very extensive, especially on the applications side,
since their implementation is rather straightforward compared to deterministic
algorithms.

3.3.1 Hit-and-run algorithms

Proposed independently by Boneh and Golan [21] and Smith [130], each itera-
tion of hit-and-run algorithms compares the current iterate x with a randomly
generated candidate. The current iterate is updated only if the candidate is an
improving point. The generation of candidates is based on two random com-
ponents. A direction d is generated using a uniform distribution over the unit
sphere. For the given d, a step s is generated from a uniform distribution over
the set of steps S in a way that x+ds is feasible. Bélisle et al. [17] generalized
hit-and-run algorithms by allowing arbitrary distributions to generate both
the direction d and step s, and proved convergence to a global optimum under
mild conditions for continuous optimization problems.

3.3.2 Simulated annealing

At iteration k, simulated annealing generates a new trial point x̂ that is com-
pared to the incumbent xk and accepted with a probability function [95]:

P(x̂|xk) =

{

exp[− f(x̂)−f(xk)
Tk

] if f(x̂) > f(xk)

1 if f(x̂) ≤ f(xk).

As a result, unlike hit-and-run algorithms, simulated annealing allows moves
to points with objective function values worse than the incumbent. The prob-
ability P depends on the “temperature” parameter Tk; the sequence {Tk} is
referred to as the cooling schedule. Cooling schedules are decreasing sequences
that converge to 0 sufficiently slow to permit the algorithm to escape from
local optima.

Initially proposed to handle combinatorial optimization problems [78], the
algorithm was later extended to continuous problems [17]. Asymptotic con-
vergence results to a global optimum have been presented [1] but there is no
guarantee that a good solution will be obtained in a finite number of itera-
tions [121]. Interesting finite-time performance aspects are discussed in [27,
104].

13

3.3.3 Genetic algorithms

Genetic algorithms, often referred to as evolutionary algorithms, were intro-
duced by Holland [58] and resemble natural selection and reproduction pro-
cesses governed by rules that assure the survival of the fittest in large popula-
tions. Individuals (points) are associated with identity genes that define a fit-
ness measure (objective function value). A set of individuals form a population,
which adapts and mutates following probabilistic rules that utilize the fitness
function. Bethke [18] extended genetic algorithms to continuous problems by
representing continuous variables by an approximate binary decomposition.
Liepins and Hilliard [86] suggested that population sizes should be between
50 and 100 to prevent failures due to bias by the highest fitness individuals.
Recent developments in this class of algorithms introduce new techniques to
update the covariance matrix of the distribution used to sample new points.
Hansen [56] proposed a covariance matrix adaptation method which adapts
the resulting search distribution to the contours of the objective function by
updating the covariance matrix deterministically using information from eval-
uated points. The resulting distribution draws new sample points with higher
probability in expected promising areas.

3.3.4 Particle swarm algorithms

Particle swarm optimization is a population-based algorithm introduced by
Kennedy and Eberhart [77,44] that maintains at each iteration a swarm of
particles (set of points) with a velocity vector associated with each particle. A
new set of particles is produced from the previous swarm using rules that take
into account particle swarm parameters (inertia, cognition, and social) and
randomly generated weights. Particle swarm optimization has enjoyed recent
interest resulting in hybrid algorithms that combine the global scope of the
particle swarm search with the faster local convergence of the Nelder-Mead
simplex algorithm [46] or GSS methods [138].

4 Historical overview and some algorithmic insights

A timeline in the history of innovation in the context of derivative-free algo-
rithms is provided in Figure 1, while Table 1 lists works that have received
over 1000 citations each. As seen in Figure 1, early works appeared sparingly
between 1960 and 1990. The Hooke-Jeeves and Nelder-Mead algorithms were
the dominant approaches in the 1960s and 1970s, and continue to be popu-
lar. Stochastic algorithms were introduced in the 1970s and 1980s and have
been the most cited. There was relatively little theory behind the determin-
istic algorithms until the 1990s. Over the last two decades, the emphasis in
derivative-free optimization has shifted towards the theoretical understand-
ing of existing algorithms as well as the development of approaches based on
surrogate models. The understanding that management of the geometry of

14

Publication Year appeared Citations1

Hooke and Jeeves [64] 1961 2281
Nelder and Mead [99] 1965 13486
Brent [25] 1973 2019
Holland [58] 1975 31494
Kirkpatrick et al. [78] 1983 23053
Eberhart and Kennedy [44,77] 1995 20369
1. From Google Scholar on 20 December 2011.

Table 1 Citations of most cited works in derivative-free algorithms

surrogate models has a considerable impact on the performance of the under-
lying algorithms led to the development of several new competing techniques.
As seen in Figure 1, these developments have led to a renewed interest in
derivative-free optimization.

4.1 Algorithmic insights

The above classification of algorithms to direct and model based, as well as
deterministic and stochastic was based on each algorithm’s predominant char-
acteristics. Many of the software implementations of these algorithms rely on
hybrids that involve characteristics from more than one of the major algorith-
mic categories. Yet, in all cases, every iteration of a derivative-free method can
be viewed as a process the main purpose of which is to determine the next
point(s) to evaluate. Information used to make this determination is obtained
from a subset of the set of previously evaluated points, ranging from an empty
subset to a single previously evaluated point to all previously evaluated points.
Different priorities are assigned to potential next points and the selection of
the next point(s) to evaluate largely depends on whether the algorithm parti-
tions the search space into subsets. We thus consider algorithms as belonging
to two major groups:

1. Algorithms that do not partition the search space. In this case, the selection
step uses information from a subset of points and the next point to be eval-
uated may be located anywhere in the search space. An example of methods
using information from a single point is simulated annealing. In this algo-
rithm, each iteration uses the incumbent to generate a new point through a
randomization process. Examples of methods using information from mul-
tiple previously evaluated points are genetic algorithms, RBF methods,
the poll step in pattern search methods, and the Nelder-Mead algorithm.
In genetic algorithms, for instance, each iteration considers a set of eval-
uated points and generates new points through multiple randomization
processes. RBF methods generate the next point by optimizing a model of
the function created using information from all previously evaluated points.
In generating set search methods, each iteration evaluates points around
the current iterate in directions generated and ordered using information

15

1960
(1961) Hooke and Jeeves algorithm is proposed [64]

(1962) First simplex-based optimization algorithm [132]

(1965) Nelder-Mead simplex algorithm is proposed [99]

(1969) First use of trust-region quadratic-based models [141]
1970

(1973) First published monograph [25]

(1975) Genetic algorithms are proposed [58]

(1979) Hit-and-run algorithms are proposed [21]
1980

(1983) First use of simulated annealing in optimization [78]

(1989) DACE stochastic model is proposed [122]
1990

(1991) Convergence of multi-directional search algorithms is shown [134]

(1991) Implicit filtering is proposed [142]

(1993) Ideas from Lipschitzian optimization introduced [72]

(1994) Geometry considerations for points in trust-region methods [110]

(1995) Particle swarm algorithm [44,77] is proposed

(1997) DACE surrogate model introduced [126]

(1998) First use of radial basis functions in surrogate models [111]

(1999) Introduction of multilevel coordinate search [65]
2000

(2002) First use of augmented Lagrangian in pattern search methods [85]

(2003) Generating set nomenclature introduced [79]

(2004) Incorporation of filters [7] and simplex derivatives [40] in pattern
search

(2009) First textbook dedicated to derivative-free optimization [35]

Fig. 1 Timeline of innovation in derivative-free optimization

from previously evaluated points. These directions are usually required to
be positive spanning sets in order to guarantee convergence via a sequence
of positive steps over these directions. MADS methods use information
from previously evaluated points to produce the best search directions out
of an infinite set of search directions. Finally, the Nelder-Mead algorithm

16

generates the next point by considering information of the geometry and
objective values of a set of previously evaluated points.

2. Algorithms that partition the search space. In this case, partition elements
are assigned priorities used later to select the most promising partition
elements. The methods that rely on partitioning include direct methods,
such as DIRECT, the model-based trust-region algorithms, the largely di-
rect approach of MCS, which also incorporates model-based local search,
and approaches akin to branch-and-bound. In DIRECT, the partitions are
generated in a way that evaluated points lie at the center of partition ele-
ments. MCS, on the other hand allows evaluated points on the boundary
of partition elements. While DIRECT does not use an explicit model of
f and MCS involves local quadratic models of f , branch-and-bound com-
bines partitioning with models of the gradient of f . Finally, trust-region
methods use information from multiple previously evaluated points. These
methods partition the space to two subsets that change over the course of
the algorithm: a region of interest (the trust region) in the neighborhood of
the current iterate and its complement. The next point to be evaluated is
typically obtained by optimizing an interpolating model using information
from a subset of previously evaluated points.

5 Derivative-free optimization software

The purpose of this and the following two sections is to examine the status
of software implementations of the algorithms reviewed above. The software
implementations for which results are presented here have been under develop-
ment and/or released since 1998. They are all capable of dealing with black-box
functions in a non-intrusive way, i.e., the source code of the optimization prob-
lem to be solved is assumed to be unavailable or impractical to modify. Table 2
lists the solvers considered, along with their main characteristics. Each solver
is discussed in detail in the sequel. The column ‘Bounds’ refers to the ability
of solvers to handle bounds on variables. Possible entries for this column are
“no” for solvers that do not allow bounds; “required” for solvers that require
bounds on all variables; and “optional” otherwise. The column ‘Constraints’
refers to the ability of solvers to handle linear algebraic constraints and general
constraints that are available as a black-box executable but not in functional
form.

5.1 ASA

Adaptive Simulated Annealing (ASA) [68] is a C implementation developed for
unconstrained optimization problems. ASA departs from traditional simulated
annealing in that it involves a generating probability density function with
fatter tails than the typical Boltzmann distribution. This allows ASA to possibly
escape from local minima by considering points far away from the current

17

Solver URL Version Language Bounds Constraints

ASA www.ingber.com 26.30 C required no
BOBYQA Available by email from mjdp@cam.ac.uk 2009 Fortran required no
CMA-ES www.lri.fr/~hansen/cmaesintro.html 3.26beta Matlab optional no
DAKOTA/DIRECT www.cs.sandia.gov/dakota/ 4.2 C++ required yes
DAKOTA/EA www.cs.sandia.gov/dakota/ 4.2 C++ required yes
DAKOTA/PATTERN www.cs.sandia.gov/dakota/ 4.2 C++ required yes
DAKOTA/SOLIS-WETS www.cs.sandia.gov/dakota/ 4.2 C++ required yes
DFO projects.coin-or.org/Dfo 2.0 Fortran required yes
FMINSEARCH www.mathworks.com 1.1.6.2 Matlab no no
GLOBAL www.inf.u-szeged.hu/~csendes 1.0 Matlab required no
HOPSPACK software.sandia.gov/trac/hopspack 2.0 C++ optional yes
IMFIL www4.ncsu.edu/~ctk/imfil.html 1.01 Matlab required yes
MCS www.mat.univie.ac.at/~neum/software/mcs/ 2.0 Matlab required no
NEWUOA Available by email from mjdp@cam.ac.uk 2004 Fortran no no
NOMAD www.gerad.ca/nomad/ 3.3 C++ optional yes
PSWARM www.norg.uminho.pt/aivaz/pswarm/ 1.3 Matlab required yes∗

SID-PSM www.mat.uc.pt/sid-psm/ 1.1 Matlab optional yes∗

SNOBFIT www.mat.univie.ac.at/~neum/software/snobfit/ 2.1 Matlab required no
TOMLAB/GLCCLUSTER tomopt.com 7.3 Matlab required yes
TOMLAB/LGO www.pinterconsulting.com/ 7.3 Matlab required yes
TOMLAB/MULTIMIN tomopt.com 7.3 Matlab required yes
TOMLAB/OQNLP tomopt.com 7.3 Matlab required yes
∗ Handles linear constraints only.

Table 2 Derivative-free solvers considered in this paper

iterate. Separate temperature parameters are assigned for each variable and
they are updated as the optimization progresses.

5.2 BOBYQA

Bound Optimization BY Quadratic Approximation (BOBYQA) is a Fortran im-
plementation of Powell’s model-based algorithm [115]. BOBYQA is an extension
of the NEWUOA algorithm to bounded problems with additional considerations
on the set of rules that maintain the set of interpolating points.

5.3 CMA-ES

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [55] is a genetic al-
gorithm implemented in multiple languages including C, Matlab, and Python.
Mutation is performed by a perturbation with expected value zero and a co-
variance matrix which is iteratively updated to guide the search towards areas
with expected lower objective values [56].

www.ingber.com
www.lri.fr/~hansen/cmaesintro.html
www.cs.sandia.gov/dakota/
www.cs.sandia.gov/dakota/
www.cs.sandia.gov/dakota/
www.cs.sandia.gov/dakota/
projects.coin-or.org/Dfo
www.mathworks.com
www.inf.u-szeged.hu/~csendes
software.sandia.gov/trac/hopspack
www4.ncsu.edu/~ctk/imfil.html
www.mat.univie.ac.at/~neum/software/mcs/
www.gerad.ca/nomad/
www.norg.uminho.pt/aivaz/pswarm/
www.mat.uc.pt/sid-psm/
www.mat.univie.ac.at/~neum/software/snobfit/
tomopt.com
www.pinterconsulting.com/
tomopt.com
tomopt.com

18

5.4 DAKOTA solvers

Design Analysis Kit for Optimization and Terascale Applications (DAKOTA) [45]
is a project at Sandia National Laboratories. DAKOTA’s initial scope was to cre-
ate a toolkit of black-box optimization methods. The scope was later expanded
to include additional optimization methods and other engineering applications,
including design of experiments, and nonlinear least squares.

DAKOTA contains a collection of optimization software packages featuring
the COLINY library [124] that includes, among others, the following solvers
that we tested:

1. DAKOTA/EA: an implementation of various genetic algorithms;
2. DAKOTA/DIRECT: an implementation of the DIRECT algorithm;
3. DAKOTA/PATTERN: various pattern search methods; and
4. DAKOTA/SOLIS-WETS: greedy search, comparing the incumbent with points

generated from a multivariate normal distribution.

5.5 DFO

Derivative Free Optimization (DFO) [28,125] is an open-source Fortran imple-
mentation of the trust-region-based algorithm originally developed by Conn
et al. [31,32] and expanded by Conn et al. [33]. DFO is a local optimiza-
tion method designed to handle very expensive function evaluations for small-
dimensional problems with fewer than 50 variables. Given a set of points,
DFO identifies the point with the best objective found and builds a quadratic
model by interpolating a selected subset of points. The resulting model is op-
timized within a trust region centered at the best point. Our computational
experiments used the open-source Fortran software IPOPT [29] to solve the
trust-region subproblems.

5.6 FMINSEARCH

FMINSEARCH is an implementation of the Nelder-Mead simplex-based method
of Lagarias et al. [81]. This code is included as a Matlab built-in function in the
Optimization Toolbox and handles unconstrained optimization problems.

5.7 GLOBAL

GLOBAL [37] is a Matlab implementation of a multistart stochastic method
proposed by Boender et al. [20]. GLOBAL draws random uniformly distributed
points in a space of interest, selects a sample, and applies a clustering proce-
dure. The derivative-free local search solver UNIRANDI [69], based on random
direction generation and linear search, is used from points outside the cluster.

19

5.8 HOPSPACK

Hybrid Optimization Parallel Search PACKage (HOPSPACK) [108] is a parallel
processing framework implemented in C++ that includes a GSS local solver.
The user is allowed to perform an asynchronous parallel optimization run
using simultaneously the embedded GSS local solver, along with user-provided
solvers.

5.9 IMFIL

IMFIL [74] is a Matlab implementation of the implicit filtering algorithm [142,
50].

5.10 MCS

Multilevel coordinate search (MCS) [101] is a Matlab implementation of the
algorithm proposed by Huyer and Neumaier [65] for global optimization of
bound-constrained problems.

5.11 NEWUOA

NEWUOA [114] is a Fortran implementation of Powell’s model-based algorithm
for derivative-free optimization [113]. The inputs to NEWUOA include initial and
lower bounds for the trust-region radius, and the number of function values to
be used for interpolating the quadratic model.

5.12 NOMAD

NOMAD [6,82] is a C++ implementation of the LTMADS [11] and ORTHO-
MADS [8] methods with the extreme barrier [11], filter [2] and progressive
barrier [12] approaches to handle general constraints. It is designed to solve
nonlinear, nonsmooth, noisy optimization problems. NOMAD’s termination cri-
terion allows for a combination of the number of points evaluated, minimum
mesh size, and the acceptable number of consecutive trials that fail to improve
the incumbent.

A related implementation, NOMADm [3], is a collection of Matlab functions
that solve bound-constrained, linear or nonlinear optimization problems with
continuous, discrete, and categorical variables.

20

5.13 PSWARM

PSWARM [137] is a C implementation of the particle swarm pattern search
method [138]. Its search step performs global search based on the particle
swarm algorithm. Its poll step relies on a coordinate search method. The poll
directions coincide with positive and negative unit vectors of all variable axes.

PSWARM allows the user to compile and use the solver as a stand-alone
software or as a custom AMPL solver. A related Matlab implementation PSwarmM

is also available [137].

5.14 SID-PSM

SID-PSM [41] is a Matlab implementation of a pattern search method with
the poll step guided by simplex derivatives [40]. The search step relies on the
optimization of quadratic surrogate models [39]. SID-PSM is designed to solve
unconstrained and constrained problems.

5.15 SNOBFIT

SNOBFIT is a Matlab implementation of the branch-and-fit algorithm proposed
by Huyer and Neumaier [66].

5.16 TOMLAB solvers

TOMLAB [60] is a Matlab environment that provides access to several derivative-
free optimization solvers, the following of which were tested:

1. TOMLAB/GLCCLUSTER [60, pp.109-111]: an implementation of the DIRECT
algorithm [71] hybridized with clustering techniques [59];

2. TOMLAB/LGO [107]: a suite of global and local nonlinear solvers [106] that im-
plements a combination of Lipschitzian-based branch-and-bound with de-
terministic and stochastic local search (several versions of LGO are available,
for instance under Maple, and may offer different features than TOMLAB/LGO);

3. TOMLAB/MULTIMIN [60, pp.148–151]: a multistart algorithm; and
4. TOMLAB/OQNLP [62]: a multistart approach that performs searches using a

local NLP solver from starting points chosen by a scatter search algorithm.

5.17 Additional solvers considered

In addition to the above solvers for which detailed results are presented in the
sequel, we experimented with several solvers for which results are not presented
here. These solvers were:

1. PRAXIS: an implementation of the minimization algorithm of Brent [25];

21

2. TOMLAB/GLBSOLVE [60, pp.106–108]: an implementation of the DIRECT
algorithm [72], specifically designed to handle box-bounded problems;

3. TOMLAB/GLCSOLVE [60, pp.118–122]: an implementation of an extended ver-
sion of the DIRECT algorithm [72] that can handle integer variables and
linear or nonlinear constraints;

4. TOMLAB/EGO [61, pp. 11–24]: an implementation of the EGO algorithm [126,
73] modified to handle linear and nonlinear constraints;

5. TOMLAB/RBFSOLVE [61, pp.5–10]: an implementation of the radial basis func-
tion [19,53] that can handle box-constrained global optimization problems.

The PRAXIS solver is one of the first derivative-free optimization solvers
developed. This solver had below average performance and has not been up-
dated since its release in 1973. Results for the above four TOMLAB solvers are
not included in the comparisons since these solvers have been designed with
the expectation for the user to provide a reasonably small bounding box for
the problem variables [59].

6 Illustrative example: camel6

To illustrate and contrast the search strategies that are employed by differ-
ent algorithms, Figure 2 shows how the different solvers progress for camel6.
This two-dimensional test problem, referred to as the ‘six-hump camel back
function,’ exhibits six local minima, two of which are global minima. In the
graphs of Figure 2, red and blue are used to represent high and low objective
function values, respectively. Global minima are located at [−0.0898, 0.7126]
and [0.0898,−0.7126] and are marked with magenta circles. Each solver was
given a limit of 2500 function evaluations and the points evaluated are marked
with white crosses. Solvers that require a starting point were given the same
starting point. Starting points are marked with a green circle. The trajectory
of the progress of the best point is marked with a cyan line, and the final
solution is marked with a yellow circle. As illustrated by these plots, solvers
DAKOTA/PATTERN, DAKOTA/SOLIS-WETS, FMINSEARCH, and NEWUOA perform a
local search, exploring the neighborhood of the starting point and converg-
ing to a local minimum far from the global minima. DIRECT-based methods
DAKOTA/DIRECT and TOMLAB/GLCCLUSTER perform searches that concentrate
evaluated points around the local minima. Indeed, the two global minima are
found by these solvers.

It is clear from Figure 2 that the stochastic solvers CMA-ES, DAKOTA/EA,
and PSWARM perform a rather large number of function evaluations that cover
the entire search space, while local search algorithms terminate quickly after
improving the solution of the starting point locally. Partitioning-based solvers
seem to strike a balance by evaluating more points than local search algorithms
but fewer than stochastic search approaches.

22

−2 0 2

−1

0

1

−2 0 2

−1

0

1

−2 0 2

−1

0

1

−2 0 2

−1

0

1

ASA BOBYQA CMA-ES DAKOTA/DIRECT

−2 0 2

−1

0

1

−2 0 2

−1

0

1

−2 0 2

−1

0

1

−2 0 2

−1

0

1

DAKOTA/EA DAKOTA/PATTERN DAKOTA/SOLIS-WETS DFO

−2 0 2

−1

0

1

−2 0 2

−1

0

1

−2 0 2

−1

0

1

−2 0 2

−1

0

1

FMINSEARCH GLOBAL HOPSPACK IMFIL

−2 0 2

−1

0

1

−2 0 2

−1

0

1

−2 0 2

−1

0

1

−2 0 2

−1

0

1

MCS NEWUOA NOMAD PSWARM

−2 0 2

−1

0

1

−2 0 2

−1

0

1

−2 0 2

−1

0

1

−2 0 2

−1

0

1

SID-PSM SNOBFIT TOMLAB/GLCCLUSTER TOMLAB/LGO

−2 0 2

−1

0

1

−2 0 2

−1

0

1

TOMLAB/MULTIMIN TOMLAB/OQNLP

Fig. 2 Solver search progress for test problem camel6

23

7 Computational comparisons

7.1 Test problems

As most of the optimization packages tested in this study were designed for
low-dimensional unconstrained problems, the problems considered were re-
stricted to a maximum of 300 variables with bound constraints only. The
solvers were tested on the following problems:

1. Richtarik’s [119] piece-wise linear problems:

min
x

max
i

{|〈ai, x〉| : i = 1, 2, . . . ,m},

2. Nesterov’s [100] quadratic test problems:

min
x

1

2
‖Ax− b‖22 + ‖x‖1,

3. a variant of Nesterov’s test problems without the nonsmooth term:

min
x

1

2
‖Ax− b‖22,

4. the ARWHEAD test problem from Conn et al. [30]:

min
x

n−1
∑

i=1

(x2
i + x2

n)
2 − 4xi + 3,

5. 245 nonconvex problems from the globallib [51] and princetonlib [116],
6. and 49 nonsmooth problems from the collection of Lukšan and Vlček [89].

For the first four families of problems, instances were generated with sizes of 5,
10, 15, 20, 25, 30, 35, 40, 45, 50, 100, 200, and 300 variables. For each problem
size, five random instances were generated for Richtarik’s and both variants
of Nesterov’s problems.

We use the number of variables to classify each problem in one of four
groups as shown in Table 3. The test problems of Table 3 are diverse, in-
volving sums of squares problems, quadratic and higher degree polynomials,
continuous and discontinuous functions, 32 problems with trigonometric func-
tions, and 33 problems with exponential or logarithmic functions. A total of
239 of the test problems are convex, while 263 are non-convex. The number of
variables (n) ranged from 1 to 300, with an average number of variables (navg)
equal to 37.6. Figure 3 presents the distribution of problems by dimensionality
and by problem class.

All test problems are available at http://thales.cheme.cmu.edu/dfo.
The same web site provides detailed results from the application of the different
solvers to the test problems.

http://thales.cheme.cmu.edu/dfo

24

Number of convex problems Number of nonconvex problems
n non- non- Total navg

smooth smooth total smooth smooth total
1–2 0 9 9 86 4 90 99 1.9
3–9 6 19 25 97 11 108 133 5.1

10–30 30 59 89 27 3 30 119 18.5
31–300 42 74 116 35 0 35 153 104.6

1–300 78 161 239 245 18 263 502 37.6

Table 3 Characteristics of test problems

0 10 20 30 40 50 60 70 80 90 100

1
2
3
4
5
6
7
8
9

10
11
12
15
16
17
19
20
25
30
31
35
40
45
48
50
51
90

100
110
120
127
155
200
300

convex smooth

convex nonsmooth

nonconvex smooth

nonconvex nonsmooth

Fig. 3 Number of variables vs. number of test problems

7.2 Experimental setup and basis of solver comparisons

All computations were performed on Intel 2.13 Ghz processors running Linux
and Matlab R2010a. The 22 solvers of Table 2 were tested using a limit of 2500
function evaluations in each run. To put this limit in perspective, 2500 function
evaluations for the bioremedation model of [98], which represents a typical
application of derivative-free optimization methods to expensive engineering
problems, would run for about 200 CPU days.

Variable bounds are required by many of the solvers but were not available
for many test problems. For problems that lacked such bounds in the problem
formulation, we restricted all variables to the interval [−10000, 10000] unless
these bounds resulted in numerical difficulties due to overflowing. In such
cases, tighter bounds were used, provided that they still included the best
known solution for each problem. The same variable bounds were used for
all solvers. For solvers that do not accept bounds, a large objective function
value was returned for argument values outside the bounding box. This value
was constant for all iterations and solvers. Whenever starting points were
required, they were drawn from a uniform distribution from the box-bounded
region. The same randomly generated starting points were used for all solvers.
Table 4 presents the number of ‘bounded’ test problems that came with lower
and upper bounds for all variables, the number of test problems that came

25

Number of problems
Available Convex Nonconvex Total
bounds smooth nonsmooth total smooth nonsmooth total
Both 0 5 5 52 3 55 60
Lower 0 72 72 9 4 13 85
None 78 84 162 184 11 195 357

Total 78 161 239 245 18 263 502

Table 4 Bounds on test problems

with lower bounds only, and ‘unbounded’ test problems that lacked a lower
and upper bounds for at least one variable.

Only objective function values were provided to all solvers. The only excep-
tion was SID-PSM, which requires the gradient of the constraints. As the prob-
lems considered here were bound-constrained with no additional constraints,
the gradients provided to SID-PSM were simply a set of unit vectors.

Many of the test problems are nonconvex and most of the solvers tested
are local solvers. Even for convex problems, performance of a solver is often
affected by the starting point chosen. For this reason, solvers that permitted
the use of a starting point were run once from each of ten different starting
points. This was possible for all solvers with the exception of DAKOTA/DIRECT,
DAKOTA/EA, GLOBAL, and MCS. The latter solvers override the selection of a
starting point and start from the center of the box-bounded region. This re-
sulted in a total number of 112,448 optimization instances to be solved.

In order to assess the quality of the solutions obtained by different solvers,
we compared the solutions returned by the solvers against the globally optimal
solution for each problem. A solver was considered to have successfully solved
a problem during a run if it returned a solution with an objective function
value within 1% or 0.01 of the global optimum, whichever was larger. In other
words, a solver was considered successful if it reported a solution y such that
f(y) ≤ max(1.01f(x∗), f(x∗) + 0.01, where x∗ is the globally optimal solution
for the problem. To obtain global optimal solutions for the test problems,
we used the general-purpose global optimization solver BARON [133,123] to
solve as many of the test problems as possible. Unlike derivative-free solvers,
BARON requires explicit algebraic expressions rather than function values alone.
BARON’s branch-and-bound strategy was able to guarantee global optimality for
most of the test problems, although this solver does not accept trigonometric
and some other nonlinear functions. For the latter problems, LINDOGLOBAL [87]
was used to obtain a global solution.

In comparing the quality of solutions returned, we will compare the average-
as well as best-case behavior of each solver. For the average-case behavior, we
compare solvers using for each solver the median objective function value of
the ten different runs. For the best-case comparison, we compare the best solu-
tion found by each solver after all ten runs. Average-case behavior is presented
in the figures and analyzed below unless explicitly stated otherwise.

26

Most instances were solved within a few minutes. Since the test problems
are algebraically and computationally simple and small, the total time required
for function evaluations for all runs was negligible. Most of the CPU time
was spent by the solvers on processing function values and determining the
sequence of iterates. A limit of 10 CPU minutes was imposed on each run.
Figure 4 presents the fraction of problems of different size that were terminated
at any of the 10 optimization instances after reaching the CPU time limit. As
seen in this figure, no solver reached this CPU time limit for problems with up
to nine variables. For problems with ten to thirty variables, only SID-PSM and
SNOBFIT had to be terminated because of the time limit. These two solvers
also hit the time limit for all problems with more than thirty variables, along
with seven additional solvers.

0

0.2

0.4

0.6

0.8

1

S
ID

−
P

S
M

S
N

O
B

F
IT

D
A

K
O

T
A

/D
IR

E
C

T

D
A

K
O

T
A

/P
A

T
T

E
R

N

H
O

P
S

P
A

C
K

D
A

K
O

T
A

/E
A

D
A

K
O

T
A

/S
O

L
IS

−
W

E
T

S

N
O

M
A

D

D
F

O

A
S

A

N
E

W
U

O
A

F
M

IN
S

E
A

R
C

H

IM
F

IL

M
C

S

P
S

W
A

R
M

T
O

M
L
A

B
/L

G
O

C
M

A
−

E
S

G
L
O

B
A

L

B
O

B
Y

Q
A

T
O

M
L
A

B
/M

U
L
T

IM
IN

T
O

M
L
A

B
/O

Q
N

L
P

T
O

M
L
A

B
/G

L
C

C
L
U

S
T

E
R

1 to 2 variables

3 to 9 variables

10 to 30 variables

31 to 300 variables

Fig. 4 Fraction of problems over the 10 CPU minute limit

7.3 Algorithmic settings

Algorithmic parameters for the codes under study should be chosen in a way
that is reflective of the relative performance of the software under consider-
ation. Unfortunately, the optimization packages tested have vastly different
input parameters that may have a significant impact upon the performance of
the algorithm. This presents a major challenge as a computational compari-
son will have to rely on a few choices of algorithmic parameters for each code.
However, for expensive experiments and time-demanding simulations like the
bioremedation model of [98], practitioners cannot afford to experiment with
many different algorithmic options. Even for less expensive functions, most

27

typical users of optimization packages are not experts on the theory and im-
plementation of the underlying algorithm and rarely explore software options.
Thus, following the approach of [102] in a recent comparison of optimization
codes, comparisons were carried out using the default parameter values for
each package, along with identical stopping criteria and starting points across
solvers. Nonetheless, all software developers were provided with early results
of our experiments and given an opportunity to revise or specify their default
option values.

Optimization instances in which a solver used fewer function evaluations
than the imposed limit were not pursued further with that particular solver. In
practice, a user could employ the remaining evaluations to restart the solver
but this procedure is highly user-dependent. Our experiments did not use
restart procedures in cases solvers terminated early.

7.4 Computational results for convex problems

Figure 5 presents the fraction of convex smooth problems solved by each solver
to within the optimality tolerance. The horizontal axis shows the progress of
the algorithm as the number of function evaluations gradually reached 2500.
The best solver, TOMLAB/GLCCLUSTER, solved 79 % of convex smooth problems,
closely followed by MCS which solved 76%, and SNOBFIT, TOMLAB/OQNLP, and
TOMLAB/MULTIMIN all of which solved over 58% of the problems. The solvers
ASA, DAKOTA/EA, DAKOTA/PATTERN, DAKOTA/SOLIS-WETS, GLOBAL, and IMFIL

did not solve any problems within the optimality tolerance. Figure 6 presents
the fraction of convex nonsmooth problems solved. At 44% and 43% of the con-
vex nonsmooth problems solved, TOMLAB/MULTIMIN and TOMLAB/GLCCLUSTER

have a significant lead over all other solvers. TOMLAB/LGO and TOMLAB/OQNLP

follow with 22% and 20%, respectively. Fifteen solvers are not even able to
solve 10% of the problems. It is strange that model-based solvers, which have
nearly complete information for many of the tested problems, solve a small
fraction of problems. However, some of these solvers are old and most of them
are not extensively tested.

A somewhat different point of view is taken in Figures 7 and 8, where we
present the fraction of problems for which each solver achieved a solution as
good as the best solution among all solvers, without regard to the best known
solution for the problems. When multiple solvers achieved the same solution,
all of them were credited as having the best solution among all solvers. As be-
fore, the horizontal axis denotes the number of allowable function evaluations.

Figure 7 shows that, for convex smooth problems, TOMLAB/MULTIMIN has a
brief lead until 200 function calls, at which point TOMLAB/GLCCLUSTER takes the
lead, finishing with 81%. TOMLAB/MULTIMIN and MCS follow closely at around
76%. The performance of TOMLAB/MULTIMIN, MCS and TOMLAB/OQNLP improves
with the number of allowable function evaluations. Ten solvers are below the
10% mark, while five solvers did not find a best solution for any problem for
any number of function calls.

28

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

TOMLAB/GLCCLUSTER

MCS

TOMLAB/OQNLP

TOMLAB/MULTIMIN

SNOBFIT

BOBYQA

TOMLAB/LGO

SID−PSM

NEWUOA

CMA−ES

HOPSPACK

FMINSEARCH

NOMAD

DFO

PSWARM

DAKOTA/DIRECT

ASA

IMFIL

DAKOTA/EA

DAKOTA/PATTERN

DAKOTA/SOLIS−WETS

GLOBAL

Fig. 5 Fraction of convex smooth problems solved as a function of allowable number of
function evaluation

0 500 1000 1500 2000 2500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

TOMLAB/MULTIMIN

TOMLAB/GLCCLUSTER

TOMLAB/LGO

TOMLAB/OQNLP

CMA−ES

SID−PSM

MCS

NOMAD

FMINSEARCH

SNOBFIT

NEWUOA

BOBYQA

IMFIL

PSWARM

DFO

HOPSPACK

DAKOTA/SOLIS−WETS

GLOBAL

DAKOTA/DIRECT

DAKOTA/PATTERN

ASA

DAKOTA/EA

Fig. 6 Fraction of convex nonsmooth problems solved as a function of allowable number of
function evaluations

29

Similarly, Figure 8 shows that, for convex nonsmooth problems, the solver
TOMLAB/MULTIMIN leads over the entire range of function calls, ending at
2500 function evaluations with the best solution for 66% of the problems.
TOMLAB/GLCCLUSTER follows with the best solution for 52% of the problems.
There is a steep difference with the remaining twenty solvers, which, with the
exception of TOMLAB/LGO, TOMLAB/OQNLP, CMA-ES and SID-PSM, are below the
10% mark.

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

TOMLAB/GLCCLUSTER

TOMLAB/MULTIMIN

MCS

TOMLAB/OQNLP

SNOBFIT

BOBYQA

TOMLAB/LGO

SID−PSM

NEWUOA

CMA−ES

HOPSPACK

FMINSEARCH

NOMAD

DFO

PSWARM

ASA

IMFIL

DAKOTA/DIRECT

DAKOTA/EA

DAKOTA/PATTERN

DAKOTA/SOLIS−WETS

GLOBAL

Fig. 7 Fraction of convex smooth problems, as a function of allowable number of function
evaluations, for which a solver found the best solution among all solvers

An interesting conclusion from Figures 5–8 is that, with the exception of
NEWUOA and BOBYQA for convex smooth problems, local solvers do not perform
as well as global solvers do even for convex problems. By casting a wider net,
global solvers are able to find better solutions than local solvers within the
limit of 2500 function calls.

7.5 Computational results with nonconvex problems

Figure 9 presents the fraction of nonconvex test problems for which the solver
median solution was within the optimality tolerance from the best known
solution. As shown in this figure, MCS (up to 800 function evaluations and
TOMLAB/MULTIMIN (beyond 800 function evaluations) attained the highest per-

30

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

TOMLAB/MULTIMIN

TOMLAB/GLCCLUSTER

TOMLAB/LGO

TOMLAB/OQNLP

CMA−ES

SID−PSM

FMINSEARCH

MCS

NOMAD

IMFIL

NEWUOA

PSWARM

SNOBFIT

DFO

BOBYQA

HOPSPACK

DAKOTA/SOLIS−WETS

GLOBAL

DAKOTA/DIRECT

DAKOTA/PATTERN

ASA

DAKOTA/EA

Fig. 8 Fraction of convex nonsmooth problems, as a function of allowable number of func-
tion evaluations, for which a solver found the best solution among all solvers

centage of global solutions, solving over 70% of the problems at 2500 func-
tion evaluations. The group of top solvers also includes TOMLAB/GLCCLUSTER,
TOMLAB/LGO and TOMLAB/OQNLP, which found over 64% of the global solutions.
Nine solvers solved over 44% of the cases, and only two solvers could not find
the solution for more than 10% of the cases. CMA-ES returned the best results
among the stochastic solvers.

At a first glance, it may appear surprising that the percentage of nonconvex
smooth problems solved by certain solvers (Figure 9) exceeds the percentage of
convex ones (Figure 5). Careful examination of Table 3, however, reveals that
the nonconvex problems in the test set contain, on average, fewer variables.

Figure 10 presents the fraction of nonconvex nonsmooth test problems for
which the solver median solution was within the optimality tolerance from the
best known solution. Although these problems are expected to be the most
difficult from the test set, TOMLAB/MULTIMIN and TOMLAB/LGO still managed
to solve about 40% of the cases. Comparing Figures 10 and 6, we observe that
the percentage of nonconvex nonsmooth problems solved by several solvers
is larger than that for the convex problems. Once again, Table 3 reveals that
the nonconvex nonsmooth problems are smaller, on average, than their convex
counterparts.

Figures 11 and 12 present the fraction of problems for which each solver
found the best solution among all solvers. As seen in these figures, after a brief
lead by MCS, TOMLAB/MULTIMIN builds an increasing lead over all other solvers,

31

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

TOMLAB/MULTIMIN

TOMLAB/GLCCLUSTER

MCS

TOMLAB/LGO

TOMLAB/OQNLP

SID−PSM

SNOBFIT

CMA−ES

BOBYQA

PSWARM

FMINSEARCH

NEWUOA

NOMAD

HOPSPACK

DFO

DAKOTA/DIRECT

GLOBAL

DAKOTA/SOLIS−WETS

DAKOTA/PATTERN

IMFIL

DAKOTA/EA

ASA

Fig. 9 Fraction of nonconvex smooth problems solved as a function of allowable number of
function evaluations

0 500 1000 1500 2000 2500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

TOMLAB/MULTIMIN

TOMLAB/LGO

PSWARM

MCS

SID−PSM

CMA−ES

TOMLAB/OQNLP

FMINSEARCH

TOMLAB/GLCCLUSTER

NOMAD

DAKOTA/DIRECT

DFO

SNOBFIT

NEWUOA

IMFIL

HOPSPACK

BOBYQA

ASA

DAKOTA/EA

DAKOTA/PATTERN

DAKOTA/SOLIS−WETS

GLOBAL

Fig. 10 Fraction of nonconvex nonsmooth problems solved as a function of allowable num-
ber of function evaluations

32

finding the best solutions for over 83% of the nonconvex smooth problems.
MCS and TOMLAB/GLCCLUSTER follow with 71%. With a final rate of over 56%
of the cases for most of the range, TOMLAB/MULTIMIN is dominant for nonconvex
nonsmooth problems.

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

TOMLAB/MULTIMIN

MCS

TOMLAB/GLCCLUSTER

TOMLAB/LGO

TOMLAB/OQNLP

SID−PSM

BOBYQA

SNOBFIT

CMA−ES

PSWARM

FMINSEARCH

NOMAD

NEWUOA

HOPSPACK

DFO

DAKOTA/DIRECT

GLOBAL

DAKOTA/SOLIS−WETS

DAKOTA/PATTERN

IMFIL

DAKOTA/EA

ASA

Fig. 11 Fraction of nonconvex smooth problems, as a function of allowable number of
function evaluations, for which a solver found the best solution among all solvers tested

7.6 Improvement from starting point

An alternative benchmark, proposed by Moré and Wild [97], measures each
algorithm’s ability to improve a starting point. For a given 0 ≤ τ ≤ 1 and
starting point x0, a solver is considered to have successfully improved the
starting point if

f(x0)− fsolver ≥ (1− τ)(f(x0)− fL),

where f(x0) is the objective value at the starting point, fsolver is the solution
reported by the solver, and fL is a lower bound on the best solution identified
among all solvers. Since the global solution is known, we used it in place of fL
in evaluating this measure. We used this measure to evaluate the average-case
performance of each solver, i.e., a problem was considered ‘solved’ by a solver

33

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

TOMLAB/MULTIMIN

TOMLAB/LGO

CMA−ES

SID−PSM

PSWARM

FMINSEARCH

MCS

TOMLAB/OQNLP

TOMLAB/GLCCLUSTER

DAKOTA/DIRECT

SNOBFIT

NOMAD

DFO

IMFIL

ASA

NEWUOA

HOPSPACK

DAKOTA/EA

DAKOTA/PATTERN

DAKOTA/SOLIS−WETS

GLOBAL

BOBYQA

Fig. 12 Fraction of nonconvex nonsmooth problems, as a function of allowable number of
function evaluations, for which a solver found the best solution among all solvers tested

if the median solution improved the starting point by at least a fraction of
(1− τ) of the largest possible reduction.

Figure 13 presents the fraction of convex smooth problems for which the
starting point was improved by a solver as a function of the τ values. Solvers
MCS, DAKOTA/DIRECT, TOMLAB/GLCCLUSTER and TOMLAB/MULTIMIN are found
to improve the starting points for 100% of the problems for τ values as low
as 10−6. At a first look, it appears pretty remarkable that a large number of
solvers can improve the starting point of 90% of the problems by 90%. Look-
ing more closely at the specific problems at hand reveals that many of them
involve polynomials and exponential terms. As a result, with a bad starting
point, the objective function value is easy to improve by 90%, even though
the final solution is still far from being optimal. Similarly, Figure 14 presents
the results for convex nonsmooth problems. In comparison with the convex
smooth problems, the convex nonsmooth problems display higher percentages
and the lines do not drop dramatically. Again, this effect is probably caused
by the lower dimensionality (in average) of the nonconvex problems.

Figures 15 and 16 present results for nonconvex problems. As expected,
the performance for smooth problems is significantly better than for non-
smooth problems. The performance of MCS, TOMLAB/LGO, TOMLAB/MULTIMIN
and TOMLAB/GLCCLUSTER is consistent, at the top group of each of the prob-
lem classes.

34

1E−1 1E−2 1E−3 1E−6 0E+0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MCS

TOMLAB/GLCCLUSTER

SNOBFIT

TOMLAB/MULTIMIN

TOMLAB/LGO

SID−PSM

BOBYQA

TOMLAB/OQNLP

NEWUOA

CMA−ES

FMINSEARCH

NOMAD

HOPSPACK

DFO

DAKOTA/DIRECT

DAKOTA/PATTERN

PSWARM

DAKOTA/SOLIS−WETS

GLOBAL

ASA

IMFIL

DAKOTA/EA

Fig. 13 Fraction of convex smooth problems for which starting points were improved within
2500 function evaluations vs. τ values

1E−1 1E−2 1E−3 1E−6 0E+0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IMFIL

MCS

TOMLAB/OQNLP

TOMLAB/MULTIMIN

TOMLAB/GLCCLUSTER

TOMLAB/LGO

SID−PSM

DAKOTA/DIRECT

CMA−ES

GLOBAL

FMINSEARCH

PSWARM

HOPSPACK

SNOBFIT

NOMAD

DFO

DAKOTA/EA

DAKOTA/PATTERN

NEWUOA

DAKOTA/SOLIS−WETS

BOBYQA

ASA

Fig. 14 Fraction of convex nonsmooth problems for which starting points were improved
within 2500 function evaluations vs. τ values

35

1E−1 1E−2 1E−3 1E−6 0E+0
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TOMLAB/MULTIMIN

MCS

TOMLAB/GLCCLUSTER

TOMLAB/OQNLP

TOMLAB/LGO

SID−PSM

SNOBFIT

BOBYQA

CMA−ES

PSWARM

NEWUOA

NOMAD

DAKOTA/DIRECT

FMINSEARCH

HOPSPACK

GLOBAL

DFO

DAKOTA/SOLIS−WETS

DAKOTA/PATTERN

IMFIL

DAKOTA/EA

ASA

Fig. 15 Fraction of nonconvex smooth problems for which starting points were improved
within 2500 function evaluations vs. τ values

1E−1 1E−2 1E−3 1E−6 0E+0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TOMLAB/LGO

TOMLAB/GLCCLUSTER

MCS

DAKOTA/DIRECT

CMA−ES

TOMLAB/MULTIMIN

TOMLAB/OQNLP

SID−PSM

NOMAD

FMINSEARCH

IMFIL

PSWARM

HOPSPACK

DAKOTA/EA

DAKOTA/SOLIS−WETS

SNOBFIT

GLOBAL

ASA

DFO

NEWUOA

DAKOTA/PATTERN

BOBYQA

Fig. 16 Fraction of nonconvex nonsmooth problems for which starting points were improved
within 2500 function evaluations vs. τ values

36

7.7 Minimal set of solvers

Given that no single solver seems to dominate over all others, the next question
addressed is whether there exists a minimal cardinality subset of the solvers
capable of collectively solving all problems or a certain fraction of all prob-
lems. In this case, a problem will be considered solved if any of the chosen
solvers succeeds in solving the problem within the optimality tolerance dur-
ing any one of the ten runs from randomly generated starting points. The
results are shown in Figures 17-20 for all combinations of convex/nonconvex
and smooth/nonsmooth problems and in Figure 21 for all problems. For dif-
ferent numbers of function evaluations (vertical axis), the bars in these figures
show the fraction of problems (horizontal axis) that are solved by the minimal
solver subset. For instance, it is seen in Figure 17 that one solver (SNOBFIT) is
sufficient to solve nearly 13% of all convex smooth problems with 100 function
evaluations. The collection of SNOBFIT and TOMLAB/GLCCLUSTER is required
to solve up to nearly 15% of the problems with 100 function evaluations. No
other pair of solvers is capable of solving more than 15% of these problems
with 100 function evaluations. Also seen in this figure is that the minimal
subset of solvers depends on the number of allowable function evaluations.
SNOBFIT and TOMLAB/GLCCLUSTER are in the minimal set when 1000 func-
tion evaluations are allowed, while SNOBFIT is no longer necessary when more
than 1000 function evaluations are allowed. For convex nonsmooth problems,
TOMLAB/MULTIMIN enters the minimal set when 500 or more function evalua-
tions are allowed. TOMLAB/MULTIMIN in combination with TOMLAB/GLCCLUSTER

are able to solve over 52% at 2500 function evaluations. For nonconvex smooth
problems, MCS is found in the minimal set when 500 or less function evalua-
tions are allowed, solving 66% of the problems at 500 function evaluations.
TOMLAB/MULTIMIN is in the minimal set of solvers when 1000 or more func-
tion evaluations are allowed. For nonconvex nonsmooth problems, NEWUOA,
TOMLAB/MULTIMIN, TOMLAB/LGO,and then CMA-ES solved the largest fraction of
problems.

Finally, Figure 21 shows that TOMLAB/MULTIMIN enters the minimal set of
solvers when 500 or more function evaluations are allowed. The combination
of TOMLAB/MULTIMIN and TOMLAB/GLCCLUSTER solved the largest fraction of
problems over most problem classes.

7.8 Impact of problem size

In general, as the size of the problem increases, the chances of obtaining better
solutions clearly decrease. As seen in Figure 22, over half of the solvers are able
to solve 50% of problems with one or two variables, with TOMLAB/GLCCLUSTER,
TOMLAB/MULTIMIN, MCS, TOMLAB/LGO and TOMLAB/OQNLP solving about 90%
of the problems. Figure 23 presents results for problems with three to nine
variables. Half of the solvers are able to solve only 29% of these problems, while

37

0 0.2 0.4 0.6 0.8

2500

2000

1500

1000

500

100

TOMLAB/GLCCLUSTER

SNOBFIT

Fig. 17 Minimum number of solvers required to solve convex smooth test problems for
various limits of function evaluations (best solver performance)

0 0.1 0.2 0.3 0.4 0.5 0.6

2500

2000

1500

1000

500

100

TOMLAB/MULTIMIN

TOMLAB/GLCCLUSTER

IMFIL

TOMLAB/OQNLP

NEWUOA

TOMLAB/LGO

FMINSEARCH

MCS

Fig. 18 Minimum number of solvers required to solve convex nonsmooth test problems for
various limits of function evaluations (best solver performance)

TOMLAB/MULTIMIN solves about 78% of the problems, followed by TOMLAB/LGO,
TOMLAB/GLCCLUSTER and MCS.

Results with problems with 10 to 30 variables are presented in Figure 24
and show that most of the solvers cannot solve more than 15% of these prob-
lems. Despite the decreasing trend, TOMLAB/MULTIMINand TOMLAB/GLCCLUSTER

are able to solve over 64% of these problems. Finally, results with problems
with 31 to 300 variables are presented in Figure 25. The same limit of 2500
function evaluations was used even for the largest problems, in order to test

38

0 0.2 0.4 0.6 0.8 1

2500

2000

1500

1000

500

100

TOMLAB/MULTIMIN

SID−PSM

TOMLAB/OQNLP

SNOBFIT

TOMLAB/GLCCLUSTER

MCS

BOBYQA

TOMLAB/LGO

Fig. 19 Minimum number of solvers required to solve nonconvex smooth test problems for
various limits of function evaluations (best solver performance)

0 0.1 0.2 0.3 0.4 0.5 0.6

2500

2000

1500

1000

500

100

CMA−ES

IMFIL

TOMLAB/MULTIMIN

NEWUOA

TOMLAB/LGO

NOMAD

Fig. 20 Minimum number of solvers required to solve nonconvex nonsmooth test problems
for various limits of function evaluations (best solver performance)

solvers for their ability to adjust to a limited budget of function evalua-
tions. Many of the solvers are not able to solve a single problem, while again
TOMLAB/GLCCLUSTER and TOMLAB/MULTIMIN are at the top solving over 28% of
these problems. Once again, a notable degrading performance is displayed by
all solvers as problem size increases.

39

0 0.2 0.4 0.6 0.8

2500

2000

1500

1000

500

100

TOMLAB/MULTIMIN

TOMLAB/GLCCLUSTER

TOMLAB/OQNLP

IMFIL

SID−PSM

SNOBFIT

TOMLAB/LGO

MCS

BOBYQA

NEWUOA

Fig. 21 Minimum number of solvers required to solve all test problems for various limits
of function evaluations (best solver performance)

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TOMLAB/GLCCLUSTER

TOMLAB/MULTIMIN

MCS

TOMLAB/LGO

TOMLAB/OQNLP

SID−PSM

CMA−ES

FMINSEARCH

SNOBFIT

PSWARM

NOMAD

DFO

BOBYQA

HOPSPACK

NEWUOA

GLOBAL

DAKOTA/DIRECT

DAKOTA/SOLIS−WETS

DAKOTA/PATTERN

IMFIL

DAKOTA/EA

ASA

Fig. 22 Fraction of problems with one to two variables that were solved

40

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

TOMLAB/MULTIMIN

TOMLAB/LGO

TOMLAB/GLCCLUSTER

MCS

TOMLAB/OQNLP

SID−PSM

CMA−ES

SNOBFIT

BOBYQA

FMINSEARCH

NOMAD

NEWUOA

PSWARM

HOPSPACK

DFO

DAKOTA/DIRECT

GLOBAL

DAKOTA/PATTERN

IMFIL

DAKOTA/SOLIS−WETS

DAKOTA/EA

ASA

Fig. 23 Fraction of problems with three to nine variables that were solved

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

TOMLAB/MULTIMIN

TOMLAB/GLCCLUSTER

TOMLAB/OQNLP

MCS

TOMLAB/LGO

SID−PSM

BOBYQA

NEWUOA

SNOBFIT

IMFIL

HOPSPACK

CMA−ES

DAKOTA/DIRECT

NOMAD

PSWARM

DFO

DAKOTA/PATTERN

GLOBAL

FMINSEARCH

DAKOTA/SOLIS−WETS

ASA

DAKOTA/EA

Fig. 24 Fraction of problems with 10 to 30 variables that were solved

41

0 500 1000 1500 2000 2500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

TOMLAB/GLCCLUSTER

TOMLAB/MULTIMIN

MCS

TOMLAB/OQNLP

SNOBFIT

BOBYQA

TOMLAB/LGO

DAKOTA/DIRECT

NEWUOA

HOPSPACK

SID−PSM

IMFIL

CMA−ES

ASA

NOMAD

DFO

FMINSEARCH

PSWARM

DAKOTA/EA

DAKOTA/PATTERN

DAKOTA/SOLIS−WETS

GLOBAL

Fig. 25 Fraction of problems with 31 to 300 variables that were solved

7.9 A multi-start experiment

Whereas the results presented in the previous four figures were obtained by al-
lowing each solver to run for 2500 iterations, the next experiment addresses the
question whether it may be better to instead run each solver for 250 iterations
from each of 10 different starting points. The results from this experiment are
shown in Figure 26, which presents the fractions of problems solved by the
solvers. Solvers DAKOTA/DIRECT and MCS, which use a predetermined starting
point are started once and given a limit of 2500 function evaluations. All the
other solvers were run from 10 random starting points and given a limit of
250 function evaluations per instance. The best result of the 10 instances is
reported. Solvers that use a predetermined starting point rank at the top of
the solvers for problems with more than 10 variables. MCS is found to lead all
solvers by a significant margin for problems with more than two variables.

7.10 Variance of the results

The previous graphs were presented in terms of median and best results among
ten problem instances for each solver. Here, we discuss the variance of the
results, as solver performance is dependent on starting point and random seeds
used in the computations. Since the difference in scales of the global solutions
and the range of values of the objective function of the test problems prevent

42

1 to 2 variables 3 to 9 variables 10 to 30 variables 31 to 300 variables
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

*MCS

*DAKOTA/DIRECT

BOBYQA

TOMLAB/MULTIMIN

SID−PSM

TOMLAB/OQNLP

GLOBAL

ASA

NOMAD

DFO

NEWUOA

FMINSEARCH

IMFIL

PSWARM

HOPSPACK

DAKOTA/EA

DAKOTA/PATTERN

DAKOTA/SOLIS−WETS

SNOBFIT

TOMLAB/LGO

CMA−ES

TOMLAB/GLCCLUSTER

Fig. 26 Fraction of problems solved in multistart experiment. Solvers marked with a ∗

were run once with a limit of 2500 function evaluations. All other solvers were run for 250
function evaluations from each of ten randomly generated starting points

a direct comparison, objective function values obtained were scaled as follows:

fscaled = 1−
fsolver − fL
fW − fL

,

where fsolver is a solution reported by the solver, fL is the global solution,
and fW is the worst solution obtained by the solver among the ten runs from
different starting points. The resulting fscaled is in the interval [0, 1] with a
value of 1 corresponding to the global solution and a value of 0 corresponding
to the worst solution reported by the solver.

Figure 27 displays the average scaled best, mean, median and worst results
among the ten optimization instances for all test problems. TOMLAB/GLCCLUSTER
and TOMLAB/MULTIMIN achieve results close to 1 and with low variability among
the best, mean, median and worst results. Detailed variability graphs are pre-
sented for each solver in the on-line material.

7.11 Impact of missing bounds

As presented in Table 4, a significant number of test problems contain at least
one variable without lower or upper bounds. Figure 28 presents the fraction of
problems solved for problems grouped by the availability of bounds on their

43

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

IM
F

IL

T
O

M
L

A
B

/G
L

C
C

L
U

S
T

E
R

T
O

M
L

A
B

/M
U

L
T

IM
IN

T
O

M
L

A
B

/O
Q

N
L

P

M
C

S

C
M

A
−

E
S

D
A

K
O

T
A

/S
O

L
IS

−
W

E
T

S

P
S

W
A

R
M

N
E

W
U

O
A

D
A

K
O

T
A

/D
IR

E
C

T

T
O

M
L

A
B

/L
G

O

G
L

O
B

A
L

S
ID

−
P

S
M

B
O

B
Y

Q
A

H
O

P
S

P
A

C
K

S
N

O
B

F
IT

D
A

K
O

T
A

/P
A

T
T

E
R

N

N
O

M
A

D

F
M

IN
S

E
A

R
C

H

D
A

K
O

T
A

/E
A

A
S

A

D
F

O

best

mean

median

worst

Fig. 27 Scaled results for the best, mean, median and worst result among the 10 optimiza-
tion instances after 2500 function evaluations for each solver

variables. Problems with bounds on all their variables display a much higher
percentage of success than the other two classes. Better results are obtained for
entirely unbounded problems compared to problems with only lower bounds
available. This is caused by the corresponding problem sizes (see Table 4).
CMA-ES, PSWARM, NOMAD and GLOBAL are found to be most sensitive to the
absence of bounds.

7.12 Refinement ability

The following experiment was designed to analyze the ability of solvers to ob-
tain a highly accurate solution. The solvers were provided an initial solution
close to a global solution of the problem and a feasible space that was asym-
metric with respect to the global solution x∗. In particular, the ranges of all
variables were set to [−0.166+x∗, 0.033+x∗], allowing each variable a range of
0.2, unless the original problem bounds were tighter, in which case the latter
were used.

Figure 29 presents the fraction of problems of different size that were solved
to within the optimality tolerance. It can be noted that for problems with one
or two variables, most of the solvers are able to find the global solution in over
90% of the cases. For problems with three to nine variables, only 8 solvers are
able to solve more than 90% of the cases. TOMLAB/GLCCLUSTER solves most

44

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
O

M
L

A
B

/M
U

L
T

IM
IN

T
O

M
L

A
B

/G
L

C
C

L
U

S
T

E
R

T
O

M
L

A
B

/L
G

O

T
O

M
L

A
B

/O
Q

N
L

P

M
C

S

S
ID

−
P

S
M

C
M

A
−

E
S

P
S

W
A

R
M

N
O

M
A

D

S
N

O
B

F
IT

B
O

B
Y

Q
A

G
L

O
B

A
L

H
O

P
S

P
A

C
K

D
A

K
O

T
A

/S
O

L
IS

−
W

E
T

S

D
F

O

F
M

IN
S

E
A

R
C

H

D
A

K
O

T
A

/D
IR

E
C

T

D
A

K
O

T
A

/P
A

T
T

E
R

N

IM
F

IL

N
E

W
U

O
A

D
A

K
O

T
A

/E
A

A
S

A

bounded

only lower bounds

unbounded

Fig. 28 Fraction of problems solved after 2500 function evaluations for classes of problems
by availability of bounds on their variables

problems involving ten to thirty variables, with just over 71% of the problems,
followed within 5% by five other solvers. Performance for problems with over
thirty variables drops significantly for all solvers except for TOMLAB/OQNLP,
NEWUOA and BOBYQA, which solve around 50% of the problems. Figures 30–
33 present similar refinement ability results for each problem class, while the
on-line supplement presents detailed graphs for each solver separately.

7.13 Solution of a test set unseen by developers

In an effort to encourage developers to improve their implementations, the
above computational results were shared with developers over several rounds
in the course of our study. The developers of DAKOTA, IMFIL, SID-PSM, and
the TOMLAB solvers improved their codes using feedback from our results. This
raises the question whether this process may have led to overtraining of the
software on our test problem collection. To address this question, we solved a
set of an additional 502 problems that had never been seen by the develop-
ers. These additional test problems were obtained from the original ones via a
transformation of variables that preserves smoothness and convexity charac-
teristics but otherwise changes the problems considerably, including the shape
of the objective functions and location of all local solutions. In particular, the

4
5

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

MCS

SID−PSM

SNOBFIT

TOMLAB/LGO

CMA−ES

NEWUOA

PSWARM

GLOBAL

TOMLAB/OQNLP

TOMLAB/GLCCLUSTER

NOMAD

DFO

FMINSEARCH

DAKOTA/SOLIS−WETS

BOBYQA

TOMLAB/MULTIMIN

DAKOTA/DIRECT

DAKOTA/EA

DAKOTA/PATTERN

IMFIL

HOPSPACK

ASA

1
 to

 2
 v

a
ria

b
le

s

3
 to

 9
 v

a
ria

b
le

s

1
0

 to
 3

0
 v

a
ria

b
le

s

3
1

 to
 3

0
0

 v
a

ria
b

le
s

F
ig
.
2
9

F
ra
ctio

n
o
f
p
ro
b
lem

s
so
lv
ed

fro
m

a
n
ea
r-o

p
tim

a
l
so
lu
tio

n

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

DFO

NEWUOA

IMFIL

MCS

HOPSPACK

DAKOTA/SOLIS−WETS

SNOBFIT

TOMLAB/LGO

CMA−ES

BOBYQA

TOMLAB/MULTIMIN

TOMLAB/OQNLP

TOMLAB/GLCCLUSTER

FMINSEARCH

SID−PSM

PSWARM

DAKOTA/PATTERN

NOMAD

DAKOTA/DIRECT

GLOBAL

DAKOTA/EA

ASA

3
 to

 9
 v

a
ria

b
le

s

1
0

 to
 3

0
 v

a
ria

b
le

s

3
1

 to
 3

0
0

 v
a

ria
b

le
s

F
ig
.
3
0

F
ra
ctio

n
o
f
co
n
v
ex

sm
o
o
th

p
ro
b
lem

s
so
lv
ed

fro
m

a
n
ea
r-o

p
tim

a
l
so
lu
tio

n

4
6

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

NOMAD

DFO

NEWUOA

FMINSEARCH

IMFIL

MCS

SID−PSM

PSWARM

HOPSPACK

DAKOTA/DIRECT

DAKOTA/EA

DAKOTA/PATTERN

DAKOTA/SOLIS−WETS

SNOBFIT

TOMLAB/LGO

CMA−ES

GLOBAL

TOMLAB/MULTIMIN

TOMLAB/OQNLP

TOMLAB/GLCCLUSTER

BOBYQA

ASA

1
 to

 2
 v

a
ria

b
le

s

3
 to

 9
 v

a
ria

b
le

s

1
0

 to
 3

0
 v

a
ria

b
le

s

3
1

 to
 3

0
0

 v
a

ria
b

le
s

F
ig
.
3
1

F
ra
ctio

n
o
f
co
n
v
ex

n
o
n
sm

o
o
th

p
ro
b
lem

s
so
lv
ed

fro
m

a
n
ea
r-o

p
tim

a
l
so
lu
tio

n

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

MCS

SID−PSM

SNOBFIT

TOMLAB/LGO

CMA−ES

DFO

NEWUOA

PSWARM

GLOBAL

BOBYQA

TOMLAB/OQNLP

TOMLAB/GLCCLUSTER

NOMAD

FMINSEARCH

DAKOTA/SOLIS−WETS

TOMLAB/MULTIMIN

DAKOTA/DIRECT

DAKOTA/EA

DAKOTA/PATTERN

IMFIL

HOPSPACK

ASA

1
 to

 2
 v

a
ria

b
le

s

3
 to

 9
 v

a
ria

b
le

s

1
0

 to
 3

0
 v

a
ria

b
le

s

3
1

 to
 3

0
0

 v
a

ria
b

le
s

F
ig
.
3
2

F
ra
ctio

n
o
f
n
o
n
co
n
v
ex

sm
o
o
th

p
ro
b
lem

s
so
lv
ed

fro
m

a
n
ea
r-o

p
tim

a
l
so
lu
tio

n

47

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
O

M
A

D

N
E

W
U

O
A

F
M

IN
S

E
A

R
C

H

M
C

S

S
ID

−
P

S
M

P
S

W
A

R
M

D
A

K
O

T
A

/D
IR

E
C

T

D
A

K
O

T
A

/E
A

D
A

K
O

T
A

/P
A

T
T

E
R

N

D
A

K
O

T
A

/S
O

L
IS

−
W

E
T

S

S
N

O
B

F
IT

T
O

M
L

A
B

/L
G

O

C
M

A
−

E
S

G
L

O
B

A
L

B
O

B
Y

Q
A

T
O

M
L

A
B

/M
U

L
T

IM
IN

T
O

M
L

A
B

/O
Q

N
L

P

T
O

M
L

A
B

/G
L

C
C

L
U

S
T

E
R

A
S

A

D
F

O

IM
F

IL

H
O

P
S

P
A

C
K

1 to 2 variables

3 to 9 variables

10 to 30 variables

Fig. 33 Fraction of nonconvex nonsmooth problems solved from a near-optimal solution

following linear transformation was used:

x = x+ (1 + tu′x)u,

t = (c− 1)/u′u,

where u is a randomly generated vector with elements in [0, 1), and c is the
condition number of the transformation. We chose c = 2, so as to result in a
variable space that is of similar size to that of the original space. The results
with and without the transformation were almost identical.

8 Conclusions

While much work is still to be done, especially for the constrained case, sig-
nificant progress has been made on the algorithmic and theoretical aspects
of derivative-free optimization over the past two decades. Without doubt, the
most important results from this activity are the recent model-based algo-
rithms as well as proofs of global convergence for direct and model-based
approaches.

A set of 22 leading software implementations of state-of-the-art derivative-
free optimization algorithms were tested on a large collection of publicly avail-
able problems, whose solutions were obtained using derivative-based and global
optimization algorithms. Our computational results show that attaining the

48

best solutions even for small problems is a challenge for most current derivative-
free solvers. The solvers TOMLAB/MULTIMIN,TOMLAB/GLCCLUSTER,MCS and TOM-

LAB/LGO, on average, provide the best solutions among all the solvers tested.
However, computational results show that there is no single solver whose per-
formance dominates that of all others. In addition, all solvers provided the
best solution possible for at least some of the test problems. Although no
subset of solvers suffices to solve all problems, our results suggest that the
combination of the commercial TOMLAB/MULTIMIN and TOMLAB/GLCCLUSTER

with the free MCS and SNOBFIT is sufficient to provide the best results in most
cases. Problem dimensionality and nonsmoothness were found to rapidly in-
crease the complexity of the search and decrease performance for all solvers.
Finally, from a starting point close to a solution, TOMLAB/OQNLP, NEWUOA and
TOMLAB/MULTIMIN showed the fastest convergence towards the solution. Miss-
ing bounds on the variables are found to affect significantly the performance
of all solvers, particularly the stochastic ones.

The issues of explicit or hidden constraints and noise in the objective func-
tion calculation have not been addressed in this paper. These issues are com-
plex and warrant further study on their own. In this direction, we performed
experiments with applications for which the objective function was a true
black-box that was not available in algebraic form. The results from these
experiments suggest that the solvers identified as best herein indeed suffice
to address a variety of true black-box application problems. These results are
detailed elsewhere [13,120,43,144,128,26,139].

Acknowledgments

This work was supported over a period of seven years by the Joint NSF/NIGMS
Initiative to Support Research in the Area of Mathematical Biology under NIH
award GM072023, National Energy Technology Laboratory’s on-going research
in CO2 capture under the RES contract DE-FE-0004000, and the National
Science Foundation under award CBET-1033661. The quality of this paper
benefited significantly from discussions with the authors of the software listed
in Table 2. Their constructive comments and suggestions on several drafts of
this paper are far too many to be acknowledged individually.

References

1. E. H. L. Aarts and P. J. M. van Laarhoven. Statistical cooling: A general approach to
combinatorial optimization problems. Phillips Journal of Research, 40:193–226, 1985.

2. M. A. Abramson. Pattern search algorithms for mixed variable general constrained
optimization problems. PhD thesis, Department of Computational and Applied Math-
ematics, Rice University, Houston, TX, August 2002.

3. M. A. Abramson. NOMADm version 4.5 User’s Guide. Air Force Institute of Technology,
Wright-Patterson AFB, OH, 2007.

4. M. A. Abramson, T. J. Asaki, J. E. Dennis Jr., K. R. O’Reilly, and R. L. Pingel.
Quantitative object reconstruction via Abel-based X-ray tomography and mixed vari-
able optimization. SIAM Journal on Imaging Sciences, pages 322–342, 2008.

49

5. M. A. Abramson and C. Audet. Convergence of mesh adaptive direct search to second-
order stationary points. SIAM Journal on Optimization, 17:606–609, 2006.

6. M. A. Abramson, C. Audet, G. Couture, J. E. Dennis, Jr., and S. Le Digabel. The
Nomad project. http://www.gerad.ca/nomad/ .

7. M. A. Abramson, C. Audet, and J. E. Dennis Jr. Filter pattern search algorithms for
mixed variable constrained optimization problems. Pacific Journal of Optimization,
3:477–500, 2007.

8. M. A. Abramson, C. Audet, J. E. Dennis Jr., and S. Le Digabel. OrthoMADS: A deter-
ministic MADS instance with orthogonal directions. SIAM Journal on Optimization,
20:948–966, 2009.

9. C. Audet. Convergence results for generalized pattern search algorithms are tight.
Optimization and Engineering, 5:101–122, 2004.

10. C. Audet, V. Béchard, and J. Chaouki. Spent potliner treatment process optimization
using a MADS algorithm. Optimization and Engineering, 9:143–160, 2008.

11. C. Audet and J. E. Dennis Jr. Mesh adaptive direct search algorithms for constrained
optimization. SIAM Journal on Optimization, 17:188–217, 2006.

12. C. Audet and J. E. Dennis Jr. A progressive barrier for derivative-free nonlinear
programming. SIAM Journal on Optimization, 20:445–472, 2009.

13. S. Awasthi. Molecular docking by derivative-free optimization solver. Master’s thesis,
Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA,
2008.

14. P. A. Barros Jr., M. R. Kirby, and D. N. Mavris. Impact of sampling techniques
selection on the creation of response surface models. SAE Transactions–Journal of
Aerospace, 113:1682–1693, 2004.

15. M. C. Bartholomew-Biggs, S. C. Parkhurst, and S. P. Wilson. Using DIRECT to solve
an aircraft routing problem. Computational Optimization and Applications, 21:311–
323, 2002.

16. R. R. Barton. Metamodeling: A state of the art review. Proceedings of the 1994 Winter
Simulation Conference, pages 237–244, 1994.

17. C. J. Bélisle, H. E. Romeijn, and R. L. Smith. Hit-and-run algorithms for generating
multivariate distributions. Mathematics of Operations Research, 18:255–266, 1993.

18. J. D. Bethke. Genetic algorithms as function optimizers. PhD thesis, Department
of Computer and Communication Sciences, University of Michigan, Ann Arbor, MI,
1980.

19. M. Björkman and K. Holmström. Global optimization of costly nonconvex functions
using radial basis functions. Optimization and Engineering, 1:373–397, 2000.

20. C. G. E. Boender, A. H. G. Rinnooy Kan, and G. T. Timmer. A stochastic method
for global optimization. Mathematical Programming, 22:125–140, 1982.

21. A. Boneh and A. Golan. Constraints’ redundancy and feasible region boundedness by
random feasible point generator (RFPG). In Third European Congress on Operations
Research (EURO III), Amsterdam, 1979.

22. A. J. Booker, J.E. Dennis Jr., P. D. Frank, D. B. Serafini, V. J. Torczon, and M. W.
Trosset. A rigorous framework for optimization of expensive functions by surrogates.
ICASE Report, pages 1–24, 1998.

23. A. J. Booker, J.E. Dennis Jr., P. D. Frank, D. B. Serafini, V. J. Torczon, and M. W.
Trosset. A rigorous framework for optimization of expensive functions by surrogates.
Structural Optimization, 17:1–13, 1999.

24. A. J. Booker, M. Meckesheimer, and T. Torng. Reliability based design optimization
using design explorer. Optimization and Engineering, 5:179–205, 2004.

25. R. P. Brent. Algorithms for Minimization without Derivatives. Prentice-Hall, Engle-
wood Cliffs, NJ, 1973.

26. K.-F. Chang. Modeling and optimization of polymerase chain reaction using derivative-
free optimization. Master’s thesis, Department of Chemical Engineering, Carnegie
Mellon University, Pittsburgh, PA, 2011.

27. T. Chiang and Y. Chow. A limit theorem for a class of inhomogeneous Markov pro-
cesses. The Annals of Probability, 17:1483–1502, 1989.

28. COIN-OR Project. Derivative Free Optimization. http://projects.coin-or.org/Dfo .
29. COIN-OR Project. IPOPT 2.3.x A software package for large-scale nonlinear optimiza-

tion. http://www.coin-or.org/Ipopt/ipopt-fortran.html.

http://www.gerad.ca/nomad/
http://projects.coin-or.org/Dfo
http://www.coin-or.org/Ipopt/ipopt-fortran.html

50

30. A. R. Conn, N. Gould, M. Lescrenier, and Ph. L. Toint. Performance of a multi-
frontal scheme for partially separable optimization. In S. Gomez and J.-P. Hennart
(eds.), Advances in Optimization and Numerical Analysis, Kluwer Academic Publish-
ers, Dordrecht, pages 79–96, 1994.

31. A. R. Conn, K. Scheinberg, and Ph. L. Toint. On the convergence of derivative-free
methods for unconstrained optimization. In M. D. Buhmann and A. Iserles (eds.),
Approximation Theory and Optimization, Tribute to M. J. D. Powell, Cambridge
University Press, Cambridge, UK, pages 83–108, 1996.

32. A. R. Conn, K. Scheinberg, and Ph. L. Toint. Recent progress in unconstrained nonlin-
ear optimization without derivatives. Mathematical Programming, 79:397–345, 1997.

33. A. R. Conn, K. Scheinberg, and Ph. L. Toint. A derivative free optimization algorithm
in practice. Proceedings of AIAA St Louis Conference, pages 1–11, 1998.

34. A. R. Conn, K. Scheinberg, and L. N. Vicente. Global convergence of general derivative-
free trust-region algorithms to first and second order critical points. SIAM Journal on
Optimization, 20:387–415, 2009.

35. A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to derivative-free opti-
mization. SIAM, Philadelphia, PA, 2009.

36. D. D. Cox and S. John. SDO: A statistical method for global optimization. In Multidis-
ciplinary design optimization (Hampton, VA, 1995), pages 315–329. SIAM, Philadel-
phia, PA, 1997.

37. T. Csendes, L. Pál, J. O. H. Send́ın, and J. R. Banga. The GLOBAL optimization
method revisited. Optimization Letters, 2:445–454, 2008.

38. A. L. Custódio, J. E. Dennis Jr., and L. N. Vicente. Using simplex gradients of
nonsmooth functions in direct search methods. IMA Journal of Numerical Analysis,
28:770–784, 2008.

39. A. L. Custódio, H. Rocha, and L. N. Vicente. Incorporating minimum Frobenius norm
models in direct search. Computational Optmization and Applications, to appear.

40. A. L. Custódio and L. N. Vicente. Using sampling and simplex derivatives in pattern
search methods. SIAM Journal on Optimization, pages 537–555, 2007.

41. A. L. Custódio and L. N. Vicente. SID-PSM: A pattern search method guided by sim-
plex derivatives for use in derivative-free optimization. Departamento de Matemática,
Universidade de Coimbra, Coimbra, Portugal, 2008.

42. S. N. Deming, L. R. Parker Jr., and M. B. Denton. A review of simplex optimization
in analytical chemistry. Critical Reviews in Analytical Chemistry, 7:187–202, 1974.

43. R. Desai. A comparison of algorithms for optimizing the omega function. Master’s
thesis, Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh,
PA, 2010.

44. R. Eberhart and J. Kennedy. A new optimizer using particle swarm theory. In Pro-
ceedings of the Sixth International Symposium on Micro Machine and Human Science,
pages 39–43, Nagoya, Japan, 1995.

45. M. S. Eldred, B. M. Adams, D. M. Gay, L. P. Swiler, K. Haskell, W. J. Bohnhoff, J. P.
Eddy, W. E. Hart, J-P Watson, P. D. Hough, T. G. Kolda, P. J. Williams, and M. L.
Martinez-Canales. DAKOTA, A Multilevel Parallel Object-Oriented Framework for De-
sign Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity
Analysis: Version 4.2 User’s Manual. Sandia National Laboratories, Albuquerque, NM
and Livermore, CA, 2008.

46. S. S. Fan and E. Zahara. A hybrid simplex search and particle swarm optimization for
unconstrained optimization. European Journal of Operational Research, 181:527–548,
2007.

47. D. E. Finkel and C. T. Kelley. Additive scaling and the DIRECT algorithm. Journal
of Global Optimization, 36:597–608, 2006.

48. K. R. Fowler, J. P. Reese, C. E. Kees, J. E. Dennis Jr., C. T. Kelley, C. T. Miller,
C. Audet, A. J. Booker, G. Couture, R. W. Darwin, M. W. Farthing, D. E. Finkel, J. M.
Gablonsky, G. Gray, and T. G. Kolda. A comparison of derivative-free optimization
methods for groundwater supply and hydraulic capture community problems. Advances
in Water Resources, 31:743–757, 2008.

49. J. M. Gablonsky. Modifications of the DIRECT Algorithm. PhD thesis, Department
of Mathematics, North Carolina State University, Raleigh, North Carolina, 2001.

51

50. P. Gilmore and C. T. Kelley. An implicit filtering algorithm for optimization of func-
tions with many local minima. SIAM Journal on Optimization, 5:269–285, 1995.

51. GLOBAL Library. http://www.gamsworld.org/global/globallib.htm.
52. G. Gray, T. Kolda, K. Sale, and M. Young. Optimizing an empirical scoring function for

transmembrane protein structure determination. INFORMS Journal on Computing,
16:406–418, 2004.

53. H.-M. Gutmann. A radial basis function method for global optimization. Journal of
Global Optimization, 19:201–227, 2001.

54. J. Han, M. Kokkolaras, and P. Y. Papalambros. Optimal design of hybrid fuel cell
vehicles. Journal of Fuel Cell Science and Technology, 5:041014, 2008.

55. N. Hansen. The CMA Evolution Strategy: A tutorial.
http://www.lri.fr/~hansen/cmaesintro.html .

56. N. Hansen. The CMA evolution strategy: A comparing review. In J. A. Lozano, P. Lar-
ranaga, I. Inza, and E. Bengoetxea, editors, Towards a new evolutionary computation.
Advances on estimation of distribution algorithms, pages 75–102. Springer, 2006.

57. R. E. Hayes, F. H. Bertrand, C. Audet, and S. T. Kolaczkowski. Catalytic combustion
kinetics: Using a direct search algorithm to evaluate kinetic parameters from light-off
curves. The Canadian Journal of Chemical Engineering, 81:1192–1199, 2003.

58. J. H. Holland. Adaptation in Natural and Artificial Systems. The University of Michi-
gan Press, 1975.

59. K. Holmström. Private Communication, 2009.
60. K. Holmström, A. O. Göran, and M. M. Edvall. User’s Guide for TOMLAB 7. Tomlab

Optimization. http://tomopt.com.
61. K. Holmström, A. O. Göran, and M. M. Edvall. User’s Guide for TOMLAB/CGO. Tomlab

Optimization, 2007. http://tomopt.com.
62. K. Holmström, A. O. Göran, and M. M. Edvall. User’s Guide for TOMLAB/OQNLP.

Tomlab Optimization, 2007. http://tomopt.com.
63. K. Holmström, N.-H. Quttineh, and M. M. Edvall. An adaptive radial basis algo-

rithm (ARBF) for expensive black-box mixed-integer constrained global optimization.
Optimization and Engineering, 9:311–339, 2008.

64. R. Hooke and T. A. Jeeves. Direct search solution of numerical and statistical problems.
Journal of the Association for Computing Machinery, 8:212–219, 1961.

65. W. Huyer and A. Neumaier. Global optimization by multilevel coordinate search.
Journal of Global Optimization, 14:331–355, 1999.

66. W. Huyer and A. Neumaier. SNOBFIT – Stable noisy optimization by branch and fit.
ACM Transactions on Mathematical Software, 35:1–25, 2008.

67. L. M. Hvattum and F. Glover. Finding local optima of high-dimensional functions
using direct search methods. European Journal of Operational Research, 195:31–45,
2009.

68. L. Ingber. Adaptive Simulated Annealing (ASA). http://www.ingber.com/#ASA.
69. T. Järvi. A random search optimizer with an application to a max-min problem.

Technical report, Pulications of the Institute for Applied Mathematics, University of
Turku, 1973.

70. D. R. Jones. A taxonomy of global optimization methods based on response surfaces.
Journal of Global Optimization, 21:345–383, 2001.

71. D. R. Jones. The DIRECT global optimization algorithm. In C. A. Floudas and P. M.
Pardalos (eds.), Encyclopedia of Optimization, Kluwer Academic Publishers, Boston,
MA, 1:431–440, 2001.

72. D. R. Jones, C. D. Perttunen, and B. E. Stuckman. Lipschitzian optimization without
the Lipschitz constant. Journal of Optimization Theory and Application, 79:157–181,
1993.

73. D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expensive
black-box functions. Journal of Global Optimization, 13:455–492, 1998.

74. C. T. Kelley. Users Guide for IMFIL version 1.0.
http://www4.ncsu.edu/~ctk/imfil.html.

75. C. T. Kelley. Detection and remediation of stagnation in the Nelder-Mead algorithm
using a sufficient decrease condition. SIAM Journal on Optimization, 10:43–55, 1999.

76. C. T. Kelley. Iterative Methods for Optimization. SIAM, 1999.

http://www.gamsworld.org/global/globallib.htm
http://www.lri.fr/~hansen/cmaesintro.html
http://tomopt.com
http://tomopt.com
http://tomopt.com
http://www.ingber.com/#ASA
http://www4.ncsu.edu/~ctk/imfil.html

52

77. J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of the IEEE
International Conference on Neural Networks, pages 1942–1948, Piscataway, NJ, USA,
1995.

78. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.
Science, 220:671–680, 1983.

79. T. G. Kolda, R. M. Lewis, and V. J. Torczon. Optimization by direct search: New
perspectives on some classical and modern methods. SIAM Review, 45:385–482, 2003.

80. T. G. Kolda and V. J. Torczon. On the convergence of asynchronous parallel pattern
search. SIAM Journal on Optimization, 14:939–964, 2004.

81. J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright. Convergence properties of
the Nelder-Mead simplex method in low dimensions. SIAM Journal on Optimization,
9:112–147, 1998.

82. S. Le Digabel. NOMAD user guide version 3.3. Technical report, Les Cahiers du GERAD,
2009.

83. R. M. Lewis and V. J. Torczon. Pattern search algorithms for bound constrained
minimization. SIAM Journal on Optimization, 9:1082–1099, 1999.

84. R. M. Lewis and V. J. Torczon. Pattern search algorithms for linearly constrained
minimization. SIAM Journal on Optimization, 10:917–941, 2000.

85. R. M. Lewis and V. J. Torczon. A globally convergent augmented lagrangian pattern
search algorithm for optimization with general constraints and simple bounds. SIAM
Journal on Optimization, 12:1075–1089, 2002.

86. G. E. Liepins and M. R. Hilliard. Genetic algorithms: Foundations and applications.
Annals of Operations Research, 21:31–58, 1989.

87. Y. Lin and L. Schrage. The global solver in the LINDO API. Optimization Methods
and Software, 24:657–668, 2009.

88. S. Lucidi and M. Sciandrone. On the global convergence of derivative-free methods for
unconstrained minimization. SIAM Journal on Optimization, 13:97–116, 2002.

89. L. Lukšan and J. Vlček. Test problems for nonsmooth unconstrained
and linearly constrained optimization. Technical report, Institute of
Computer Science, Academy of Sciences of the Czech Republic, 2000.
http://www3.cs.cas.cz/ics/reports/v798-00.ps .

90. A. L. Marsden, J. A. Feinstein, and C. A. Taylor. A computational framework for
derivative-free optimization of cardiovascular geometries. Computer Methods in Ap-
plied Mechanics and Engineering, 197:1890–1905, 2008.

91. A. L. Marsden, M. Wang, J. E. Dennis Jr., and P. Moin. Optimal aeroacustic shape
design using the surrogate management framework. Optimization and Engineering,
5:235–262, 2004.

92. A. L. Marsden, M. Wang, J. E. Dennis Jr., and P. Moin. Trailing-edge noise reduc-
tion using derivative-free optimization and large-eddy simulation. Journal of Fluid
Mechanics, 5:235–262, 2007.

93. G. Matheron. Principles of geostatistics. Economic Geology, 58:1246–1266, 1967.
94. K. I. M. McKinnon. Convergence of the Nelder-Mead simplex method to a nonsta-

tionary point. SIAM Journal on Optimization, 9:148–158, 1998.
95. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller.

Equation of state calculations by fast computing machines. The Journal of Chemical
Physics, 21:1087–1092, 1953.

96. M. Mongeau, H. Karsenty, V. Rouzé, and J. B. Hiriart-Urruty. Comparison of public-
domain software for black box global optimization. Optimization Methods & Software,
13:203–226, 2000.

97. J. Moré and S. Wild. Benchmarking derivative-free optimization algorithms. Opti-
mization Online Digest, pages 1–20, 2008.

98. P. Mugunthan, C. A. Shoemaker, and R. G. Regis. Comparison of function approxi-
mation, heuristic, and derivative-based methods for automatic calibration of compu-
tationally expensive groundwater bioremediation models. Water Resources Research,
41:W11427, 2005.

99. J. A. Nelder and R. Mead. A simplex method for function minimization. Computer
Journal, 7:308–313, 1965.

100. Y. Nesterov. Gradient methods for minimizing composite objective function. Opti-
mization Online Digest, pages 1–30, 2007.

http://www3.cs.cas.cz/ics/reports/v798-00.ps

53

101. A. Neumaier. MCS: Global Optimization by Multilevel Coordinate Search.
http://www.mat.univie.ac.at/~neum/software/mcs/.

102. A. Neumaier, O. Shcherbina, W. Huyer, and T. Vinkó. A comparison of complete
global optimization solvers. Mathematical Programming, 103:335–356, 2005.

103. R. Oeuvray. Trust-region methods based on radial basis functions with application to
biomedical imaging. PhD thesis, Institute of Mathematics, Swiss Federal Institute of
Technology, Lausanne, Switzerland, March 2005.

104. J. E. Orosz and S. H. Jacobson. Finite-time performance analysis of static simulated
annealing algorithms. Computational Optimization and Applications, 21:21–53, 2002.

105. J. Pintér. Homepage of Pintér Consulting Services.
http://www.pinterconsulting.com/.

106. J. D. Pintér. Global Optimization in Action: Continuous and Lipschitz Optimiza-
tion. Algorithms, Implementations and Applications. Nonconvex Optimization and
Its Applications. Kluwer Academic Publishers, 1995.

107. J. D. Pintér, K. Holmström, A. O. Göran, and M. M. Edvall. User’s Guide for
TOMLAB/LGO. Tomlab Optimization, 2006. http://tomopt.com.

108. T. D. Plantenga. HOPSPACK 2.0 User Manual. Technical Report SAND2009-6265,
Sandia National Laboratories, Albuquerque, NM and Livermore, CA, 2009.

109. M. J. D. Powell. A direct search optimization method that models the objective and
constraint functions by linear interpolation. In S. Gomez and J-P. Hennart, editors,
Advances in Optimization and Numerical Analysis, pages 51–67. Kluwer Academic,
Dordrecht, 1994.

110. M. J. D. Powell. A direct search optimization method that models the objective by
quadratic interpolation. In Presentation at the 5th Stockholm Optimization Days,
1994.

111. M. J. D. Powell. Recent research at Cambridge on radial basis functions. Technical
report, Department of Applied Mathematics and Theoretical Physics, University of
Cambridge, 1998.

112. M. J. D. Powell. UOBYQA: unconstrained optimization by quadratic approximation.
Mathematical Programming, 92:555–582, 2002.

113. M. J. D. Powell. The NEWUOA software for unconstrained optimization without deriva-
tives. In G. Di Pillo and M. Roma (eds.), Large-Scale Nonlinear Optimization,
Springer, New York, NY, pages 255–297, 2006.

114. M. J. D. Powell. Developments of NEWUOA for minimization without derivatives.
IMA Journal of Numerical Analysis, 28:649–664, 2008.

115. M. J. D. Powell. The BOBYQA algorithm for bound constrained optimization without
derivatives. Technical report, Department of Applied Mathematics and Theoretical
Physics, University of Cambridge, 2009.

116. Princeton Library. http://www.gamsworld.org/performance/princetonlib/princetonlib.htm.
117. R. G. Regis and C. A. Shoemaker. Constrained global optimization of expensive black

box functions using radial basis functions. Journal of Global Optimization, 31:153–171,
2005.

118. R. G. Regis and C. A. Shoemaker. Improved strategies for radial basis function methods
for global optimization. Journal of Global Optimization, 37:113–135, 2007.

119. P. Richtarik. Improved algorithms for convex minimization in rel-
ative scale. SIAM Journal on Optimization, To appear, 2010.
http://www.optimization-online.org/DB_FILE/2009/02/2226.pdf.

120. L. M. Rios. Algorithms for derivative-free optimization. PhD thesis, Department of
Industrial and Enterprise Systems Engineering, University of Illinois, Urbana, IL, May
2009.

121. F. Romeo and A. Sangiovanni-Vincentelli. A theoretical framework for simulated an-
nealing. Algorithmica, 6:302–345, 1991.

122. J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn. Design and analysis of computer
experiments. Statistical Science, 4:409–423, 1989.

123. N. V. Sahinidis and M. Tawarmalani. BARON 7.5: Global Optimization of Mixed-
Integer Nonlinear Programs, User’s Manual, 2005.

124. Sandia National Laboratories. The Coliny Project.
https://software.sandia.gov/trac/acro/wiki/Overview/Projects.

http://www.mat.univie.ac.at/~neum/software/mcs/
http://www.pinterconsulting.com/
http://tomopt.com
http://www.gamsworld.org/performance/princetonlib/princetonlib.htm
http://www.optimization-online.org/DB_FILE/2009/02/2226.pdf
https://software.sandia.gov/trac/acro/wiki/Overview/Projects

54

125. K. Scheinberg. Manual for Fortran Software Package DFO v2.0, 2003.
126. M. Schonlau. Computer Experiments and Global Optimization. PhD thesis, Depart-

ment of Statistics, University of Waterloo, Waterloo, Ontario, Canada, 1997.
127. D. B. Serafini. A framework for managing models in nonlinear optimization of compu-

tationally expensive functions. PhD thesis, Department of Computational and Applied
Mathematics, Rice University, Houston, TX, November 1998.

128. S. B. Shah and N. V. Sahinidis. SAS-Pro: Simultaneous residue assignment and struc-
ture superposition for protein structure alignment. 2011, submitted.

129. B. O. Shubert. A sequential method seeking the global maximum of a function. SIAM
Journal on Numerical Analysis, 9:379–388, 1972.

130. R. L. Smith. Efficient Monte Carlo procedures for generating points uniformly dis-
tributed over bounded regions. Operations Research, 32:1296–1308, 1984.

131. J. Søndergaard. Optimization using surrogate models–by the space mapping technique.
PhD thesis, Technical University of Denmark, Department of Mathematical Modelling,
Lingby, Denmark, 2003.

132. W. Spendley, G. R. Hext, and F. R. Himsworth. Sequential application for simplex
designs in optimisation and evolutionary operation. Technometrics, 4:441–461, 1962.

133. M. Tawarmalani and N. V. Sahinidis. A polyhedral branch-and-cut approach to global
optimization. Mathematical Programming, 103:225–249, 2005.

134. V. J. Torczon. On the convergence of multidirectional search algorithms. SIAM Journal
on Optimization, 1:123–145, 1991.

135. V. J. Torczon. On the convergence of pattern search algorithms. SIAM Journal on
Optimization, 7:1–25, 1997.

136. P. Tseng. Fortified-descent simplicial search method: A general approach. SIAM
Journal on Optimization, 10:269–288, 1999.

137. A. I. F. Vaz. PSwarm Home Page. http://www.norg.uminho.pt/aivaz/pswarm/.
138. A. I. F. Vaz and L. N. Vicente. A particle swarm pattern search method for bound

constrained global optimization. Journal of Global Optimization, 39:197–219, 2007.
139. H. Wang. Application of derivative-free algorithms in powder diffraction. Master’s

thesis, Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh,
PA, 2011.

140. S. M. Wild, R. G. Regis, and C. A. Shoemaker. ORBIT: Optimization by radial basis
function interpolation in trust-regions. SIAM J. Sci. Comput., 30:3197–3219, 2008.

141. D. Winfield. Function and functional optimization by interpolation in data tables.
PhD thesis, Harvard University, Cambridge, MA, 1969.

142. T. A. Winslow, R. J. Trew, P. Gilmore, and C. T. Kelley. Simulated performance opti-
mization of gaas mesfet amplifiers. In IEEE/Cornell Conference on Advanced Concepts
in High Speed Semiconductor Devices and Circuits, pages 393–402, Piscataway, NJ,
1991.

143. Z. Zhao, J. C. Meza, and M. Van Hove. Using pattern search methods for surface
structure determination of nanomaterials. Journal of Physics: Condensed Matter,
18:8693–8706, 2006.

144. Y. Zheng. Pairs trading and portfolio optimization. Master’s thesis, Department of
Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, 2011.

http://www.norg.uminho.pt/aivaz/pswarm/

Noname manuscript No.
(will be inserted by the editor)

Derivative-free optimization: A review of algorithms and

comparison of software implementations

Material for On-line Supplement

Luis Miguel Rios · Nikolaos V. Sahinidis

Received: date / Accepted: date

Contents

1 Fraction of problems solved as a function of allowable number of function evaluations 2
2 Fraction of problems, as a function of allowable number of function evaluations,

for which a solver found the best solution among all solvers 5
3 Fraction of problems, as a function of τ values, for which starting points were

improved within 2500 function evaluations . 8
4 Minimum number of solvers required to solve test problems for various limits of

function evaluations (best solver performance) . 11
5 Fraction of problems solved as a function of problem size 14
6 Best, mean, median and worst results over 10 runs and after 2500 function evaluations 17
7 Refinement ability. 29

Luis Miguel Rios
Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213,
e-mail: lmrios@gmail.com.

Nikolaos V. Sahinidis
National Energy Technology Laboratory, Department of Chemical Engineering, Carnegie
Mellon University, Pittsburgh, PA, 15213, e-mail: sahinidis@cmu.edu. Address all corre-
spondence to this author.

2

1 Fraction of problems solved as a function of allowable number of
function evaluations

Iterations
Solver 100 200 500 1000 2000 2500
ASA 0.018 0.020 0.020 0.022 0.024 0.024
BOBYQA 0.112 0.203 0.249 0.283 0.297 0.317
CMA-ES 0.042 0.145 0.217 0.239 0.269 0.297
DAKOTA/DIRECT 0.129 0.143 0.147 0.147 0.147 0.147
DAKOTA/EA 0.026 0.032 0.036 0.038 0.040 0.040
DAKOTA/PATTERN 0.042 0.074 0.074 0.078 0.082 0.082
DAKOTA/SOLIS-WETS 0.042 0.082 0.090 0.092 0.092 0.094
DFO 0.058 0.072 0.125 0.145 0.159 0.181
FMINSEARCH 0.084 0.197 0.225 0.235 0.235 0.237
GLOBAL 0.082 0.125 0.129 0.131 0.131 0.131
HOPSPACK 0.118 0.171 0.187 0.191 0.197 0.201
IMFIL 0.078 0.135 0.149 0.159 0.165 0.175
MCS 0.281 0.404 0.442 0.482 0.508 0.514
NEWUOA 0.076 0.159 0.207 0.237 0.261 0.269
NOMAD 0.062 0.165 0.203 0.217 0.229 0.231
PSWARM 0.032 0.112 0.173 0.199 0.211 0.225
SID-PSM 0.139 0.303 0.337 0.367 0.371 0.378
SNOBFIT 0.137 0.219 0.283 0.315 0.335 0.343
TOMLAB/GLCCLUSTER 0.257 0.406 0.504 0.556 0.592 0.622
TOMLAB/LGO 0.131 0.337 0.400 0.430 0.456 0.478
TOMLAB/MULTIMIN 0.145 0.392 0.512 0.578 0.610 0.637
TOMLAB/OQNLP 0.137 0.303 0.392 0.440 0.470 0.490

Table 1 Fraction of all problems solved as a function of allowable number of function
evaluation

3

Iterations
Solver 100 200 500 1000 2000 2500
ASA 0.000 0.000 0.000 0.000 0.000 0.000
BOBYQA 0.026 0.115 0.218 0.321 0.385 0.474
CMA-ES 0.000 0.000 0.051 0.077 0.090 0.128
DAKOTA/DIRECT 0.000 0.000 0.013 0.013 0.013 0.013
DAKOTA/EA 0.000 0.000 0.000 0.000 0.000 0.000
DAKOTA/PATTERN 0.000 0.000 0.000 0.000 0.000 0.000
DAKOTA/SOLIS-WETS 0.000 0.000 0.000 0.000 0.000 0.000
DFO 0.000 0.000 0.000 0.000 0.013 0.038
FMINSEARCH 0.000 0.064 0.077 0.077 0.077 0.077
GLOBAL 0.000 0.000 0.000 0.000 0.000 0.000
HOPSPACK 0.000 0.026 0.064 0.077 0.103 0.115
IMFIL 0.000 0.077 0.128 0.179 0.179 0.205
MCS 0.077 0.321 0.462 0.628 0.756 0.756
NEWUOA 0.026 0.090 0.192 0.244 0.333 0.359
NOMAD 0.000 0.000 0.026 0.051 0.064 0.064
PSWARM 0.000 0.000 0.000 0.013 0.026 0.026
SID-PSM 0.064 0.256 0.372 0.436 0.436 0.449
SNOBFIT 0.128 0.321 0.513 0.577 0.577 0.577
TOMLAB/GLCCLUSTER 0.077 0.385 0.590 0.756 0.782 0.795
TOMLAB/LGO 0.064 0.192 0.269 0.333 0.397 0.462
TOMLAB/MULTIMIN 0.000 0.231 0.372 0.500 0.564 0.628
TOMLAB/OQNLP 0.064 0.231 0.385 0.462 0.564 0.654

Table 2 Fraction of convex smooth problems solved as a function of allowable number of
function evaluations

Iterations
Solver 100 200 500 1000 2000 2500
ASA 0.000 0.000 0.000 0.000 0.000 0.000
BOBYQA 0.019 0.062 0.062 0.075 0.075 0.075
CMA-ES 0.000 0.050 0.087 0.087 0.130 0.149
DAKOTA/DIRECT 0.012 0.012 0.012 0.012 0.012 0.012
DAKOTA/EA 0.000 0.000 0.000 0.000 0.000 0.000
DAKOTA/PATTERN 0.000 0.006 0.006 0.012 0.012 0.012
DAKOTA/SOLIS-WETS 0.000 0.019 0.019 0.025 0.025 0.025
DFO 0.006 0.019 0.037 0.037 0.037 0.043
FMINSEARCH 0.037 0.075 0.081 0.087 0.087 0.087
GLOBAL 0.006 0.025 0.025 0.025 0.025 0.025
HOPSPACK 0.037 0.037 0.037 0.037 0.043 0.043
IMFIL 0.000 0.019 0.031 0.037 0.043 0.050
MCS 0.075 0.087 0.093 0.112 0.118 0.124
NEWUOA 0.012 0.050 0.062 0.075 0.075 0.081
NOMAD 0.006 0.056 0.081 0.087 0.099 0.099
PSWARM 0.000 0.006 0.025 0.037 0.043 0.050
SID-PSM 0.000 0.106 0.106 0.130 0.137 0.137
SNOBFIT 0.000 0.025 0.050 0.068 0.081 0.087
TOMLAB/GLCCLUSTER 0.037 0.168 0.298 0.342 0.404 0.429
TOMLAB/LGO 0.019 0.106 0.161 0.174 0.199 0.217
TOMLAB/MULTIMIN 0.019 0.174 0.292 0.366 0.416 0.441
TOMLAB/OQNLP 0.000 0.062 0.118 0.149 0.180 0.199

Table 3 Fraction of convex nonsmooth problems solved as a function of allowable number
of function evaluations

4

Iterations
Solver 100 200 500 1000 2000 2500
ASA 0.037 0.041 0.041 0.045 0.049 0.049
BOBYQA 0.208 0.339 0.396 0.424 0.433 0.445
CMA-ES 0.086 0.257 0.355 0.392 0.416 0.449
DAKOTA/DIRECT 0.245 0.273 0.278 0.278 0.278 0.278
DAKOTA/EA 0.053 0.065 0.073 0.078 0.082 0.082
DAKOTA/PATTERN 0.086 0.147 0.147 0.151 0.159 0.159
DAKOTA/SOLIS-WETS 0.086 0.155 0.171 0.171 0.171 0.176
DFO 0.114 0.135 0.229 0.265 0.290 0.322
FMINSEARCH 0.143 0.318 0.367 0.384 0.384 0.388
GLOBAL 0.163 0.241 0.249 0.253 0.253 0.253
HOPSPACK 0.216 0.314 0.335 0.339 0.339 0.343
IMFIL 0.155 0.233 0.237 0.237 0.245 0.253
MCS 0.490 0.657 0.682 0.694 0.702 0.710
NEWUOA 0.139 0.261 0.318 0.355 0.376 0.380
NOMAD 0.122 0.294 0.343 0.359 0.371 0.376
PSWARM 0.065 0.220 0.327 0.359 0.371 0.396
SID-PSM 0.265 0.453 0.486 0.506 0.510 0.522
SNOBFIT 0.241 0.327 0.380 0.412 0.441 0.453
TOMLAB/GLCCLUSTER 0.469 0.592 0.637 0.657 0.682 0.722
TOMLAB/LGO 0.229 0.543 0.600 0.633 0.649 0.661
TOMLAB/MULTIMIN 0.278 0.592 0.714 0.755 0.767 0.784
TOMLAB/OQNLP 0.257 0.498 0.584 0.637 0.645 0.645

Table 4 Fraction of nonconvex smooth problems solved as a function of allowable number
of function evaluations

Iterations
Solver 100 200 500 1000 2000 2500
ASA 0.000 0.000 0.000 0.000 0.000 0.000
BOBYQA 0.000 0.000 0.056 0.056 0.056 0.056
CMA-ES 0.000 0.111 0.222 0.222 0.278 0.278
DAKOTA/DIRECT 0.167 0.167 0.167 0.167 0.167 0.167
DAKOTA/EA 0.000 0.000 0.000 0.000 0.000 0.000
DAKOTA/PATTERN 0.000 0.000 0.000 0.000 0.000 0.000
DAKOTA/SOLIS-WETS 0.000 0.000 0.000 0.000 0.000 0.000
DFO 0.000 0.000 0.056 0.111 0.111 0.111
FMINSEARCH 0.056 0.222 0.222 0.222 0.222 0.222
GLOBAL 0.000 0.000 0.000 0.000 0.000 0.000
HOPSPACK 0.000 0.056 0.056 0.056 0.056 0.056
IMFIL 0.056 0.111 0.111 0.111 0.111 0.111
MCS 0.167 0.167 0.222 0.278 0.278 0.278
NEWUOA 0.000 0.056 0.056 0.056 0.056 0.056
NOMAD 0.000 0.111 0.167 0.167 0.167 0.167
PSWARM 0.000 0.056 0.167 0.278 0.333 0.333
SID-PSM 0.000 0.222 0.222 0.278 0.278 0.278
SNOBFIT 0.000 0.056 0.056 0.056 0.111 0.111
TOMLAB/GLCCLUSTER 0.111 0.111 0.167 0.222 0.222 0.222
TOMLAB/LGO 0.111 0.222 0.389 0.389 0.389 0.389
TOMLAB/MULTIMIN 0.111 0.333 0.333 0.389 0.389 0.444
TOMLAB/OQNLP 0.056 0.111 0.278 0.278 0.278 0.278

Table 5 Fraction of nonconvex nonsmooth problems solved as a function of allowable num-
ber of function evaluations

5

2 Fraction of problems, as a function of allowable number of
function evaluations, for which a solver found the best solution
among all solvers

Iterations
Solver 100 200 500 1000 2000 2500
ASA 0.008 0.010 0.012 0.014 0.016 0.018
BOBYQA 0.118 0.191 0.237 0.265 0.279 0.299
CMA-ES 0.034 0.131 0.205 0.239 0.265 0.289
DAKOTA/DIRECT 0.149 0.135 0.137 0.137 0.137 0.137
DAKOTA/EA 0.016 0.020 0.028 0.030 0.030 0.030
DAKOTA/PATTERN 0.042 0.058 0.062 0.062 0.062 0.064
DAKOTA/SOLIS-WETS 0.034 0.070 0.072 0.074 0.074 0.074
DFO 0.056 0.068 0.118 0.137 0.151 0.173
FMINSEARCH 0.078 0.193 0.221 0.233 0.231 0.231
GLOBAL 0.076 0.100 0.106 0.108 0.108 0.108
HOPSPACK 0.112 0.159 0.171 0.173 0.177 0.185
IMFIL 0.074 0.108 0.124 0.129 0.133 0.139
MCS 0.392 0.422 0.436 0.472 0.492 0.498
NEWUOA 0.070 0.149 0.193 0.221 0.243 0.253
NOMAD 0.060 0.157 0.185 0.201 0.207 0.213
PSWARM 0.024 0.104 0.163 0.195 0.203 0.221
SID-PSM 0.133 0.301 0.331 0.351 0.359 0.365
SNOBFIT 0.131 0.213 0.279 0.307 0.319 0.323
TOMLAB/GLCCLUSTER 0.416 0.510 0.554 0.590 0.629 0.645
TOMLAB/LGO 0.139 0.339 0.390 0.422 0.448 0.464
TOMLAB/MULTIMIN 0.470 0.679 0.717 0.743 0.743 0.753
TOMLAB/OQNLP 0.141 0.303 0.382 0.430 0.458 0.476

Table 6 Fraction of problems, as a function of allowable number of function evaluations,
for which a solver found the best solution among all solvers

6

Iterations
Solver 100 200 500 1000 2000 2500
ASA 0.000 0.000 0.000 0.000 0.000 0.000
BOBYQA 0.026 0.115 0.218 0.321 0.385 0.474
CMA-ES 0.000 0.000 0.051 0.077 0.090 0.128
DAKOTA/DIRECT 0.013 0.000 0.000 0.000 0.000 0.000
DAKOTA/EA 0.000 0.000 0.000 0.000 0.000 0.000
DAKOTA/PATTERN 0.000 0.000 0.000 0.000 0.000 0.000
DAKOTA/SOLIS-WETS 0.000 0.000 0.000 0.000 0.000 0.000
DFO 0.000 0.000 0.000 0.000 0.013 0.038
FMINSEARCH 0.000 0.064 0.077 0.077 0.077 0.077
GLOBAL 0.000 0.000 0.000 0.000 0.000 0.000
HOPSPACK 0.000 0.026 0.064 0.077 0.103 0.115
IMFIL 0.000 0.077 0.128 0.167 0.167 0.192
MCS 0.205 0.346 0.474 0.628 0.756 0.756
NEWUOA 0.026 0.090 0.179 0.244 0.321 0.359
NOMAD 0.000 0.000 0.026 0.051 0.064 0.064
PSWARM 0.000 0.000 0.000 0.013 0.026 0.026
SID-PSM 0.064 0.256 0.372 0.423 0.436 0.449
SNOBFIT 0.128 0.321 0.513 0.577 0.577 0.577
TOMLAB/GLCCLUSTER 0.269 0.615 0.667 0.795 0.808 0.808
TOMLAB/LGO 0.064 0.192 0.269 0.333 0.397 0.462
TOMLAB/MULTIMIN 0.538 0.526 0.603 0.679 0.731 0.769
TOMLAB/OQNLP 0.064 0.231 0.385 0.462 0.564 0.654

Table 7 Fraction of convex smooth problems, as a function of allowable number of function
evaluations, for which a solver found the best solution among all solvers

Iterations
Solver 100 200 500 1000 2000 2500
ASA 0.000 0.000 0.000 0.000 0.000 0.000
BOBYQA 0.019 0.031 0.031 0.031 0.031 0.031
CMA-ES 0.000 0.050 0.062 0.087 0.118 0.143
DAKOTA/DIRECT 0.019 0.012 0.012 0.012 0.012 0.012
DAKOTA/EA 0.000 0.000 0.000 0.000 0.000 0.000
DAKOTA/PATTERN 0.000 0.006 0.006 0.006 0.006 0.006
DAKOTA/SOLIS-WETS 0.000 0.019 0.019 0.019 0.019 0.019
DFO 0.006 0.019 0.025 0.025 0.025 0.031
FMINSEARCH 0.025 0.068 0.075 0.087 0.081 0.081
GLOBAL 0.000 0.025 0.019 0.019 0.019 0.019
HOPSPACK 0.012 0.019 0.019 0.019 0.019 0.025
IMFIL 0.000 0.006 0.025 0.025 0.037 0.043
MCS 0.118 0.081 0.062 0.068 0.075 0.075
NEWUOA 0.012 0.043 0.056 0.056 0.056 0.056
NOMAD 0.000 0.043 0.050 0.050 0.056 0.062
PSWARM 0.000 0.000 0.019 0.037 0.043 0.056
SID-PSM 0.000 0.075 0.087 0.099 0.112 0.106
SNOBFIT 0.000 0.019 0.043 0.043 0.050 0.050
TOMLAB/GLCCLUSTER 0.261 0.311 0.410 0.441 0.509 0.522
TOMLAB/LGO 0.019 0.093 0.118 0.143 0.155 0.174
TOMLAB/MULTIMIN 0.615 0.677 0.646 0.665 0.640 0.640
TOMLAB/OQNLP 0.000 0.068 0.099 0.137 0.149 0.168

Table 8 Fraction of convex nonsmooth problems, as a function of allowable number of
function evaluations, for which a solver found the best solution among all solvers

7

Iterations
Solver 100 200 500 1000 2000 2500
ASA 0.016 0.020 0.024 0.029 0.033 0.037
BOBYQA 0.220 0.335 0.396 0.420 0.429 0.441
CMA-ES 0.069 0.233 0.347 0.392 0.416 0.433
DAKOTA/DIRECT 0.282 0.261 0.265 0.265 0.265 0.265
DAKOTA/EA 0.033 0.041 0.057 0.061 0.061 0.061
DAKOTA/PATTERN 0.086 0.114 0.122 0.122 0.122 0.127
DAKOTA/SOLIS-WETS 0.069 0.131 0.135 0.139 0.139 0.139
DFO 0.110 0.127 0.220 0.261 0.286 0.318
FMINSEARCH 0.139 0.314 0.363 0.380 0.380 0.380
GLOBAL 0.155 0.188 0.204 0.208 0.208 0.208
HOPSPACK 0.216 0.306 0.318 0.318 0.318 0.327
IMFIL 0.143 0.180 0.188 0.188 0.188 0.188
MCS 0.637 0.682 0.682 0.702 0.702 0.714
NEWUOA 0.127 0.249 0.302 0.339 0.359 0.367
NOMAD 0.122 0.286 0.335 0.359 0.363 0.371
PSWARM 0.049 0.204 0.314 0.355 0.359 0.388
SID-PSM 0.253 0.465 0.486 0.498 0.502 0.514
SNOBFIT 0.229 0.318 0.376 0.412 0.433 0.437
TOMLAB/GLCCLUSTER 0.584 0.633 0.645 0.649 0.682 0.706
TOMLAB/LGO 0.249 0.555 0.604 0.629 0.653 0.657
TOMLAB/MULTIMIN 0.351 0.727 0.800 0.824 0.824 0.837
TOMLAB/OQNLP 0.265 0.494 0.584 0.629 0.645 0.641

Table 9 Fraction of nonconvex smooth problems, as a function of allowable number of
function evaluations, for which a solver found the best solution among all solvers

Iterations
Solver 100 200 500 1000 2000 2500
ASA 0.000 0.000 0.000 0.000 0.000 0.000
BOBYQA 0.000 0.000 0.000 0.000 0.000 0.000
CMA-ES 0.000 0.056 0.222 0.222 0.278 0.333
DAKOTA/DIRECT 0.111 0.111 0.111 0.111 0.111 0.111
DAKOTA/EA 0.000 0.000 0.000 0.000 0.000 0.000
DAKOTA/PATTERN 0.000 0.000 0.000 0.000 0.000 0.000
DAKOTA/SOLIS-WETS 0.000 0.000 0.000 0.000 0.000 0.000
DFO 0.000 0.000 0.056 0.056 0.056 0.056
FMINSEARCH 0.056 0.222 0.222 0.222 0.222 0.222
GLOBAL 0.000 0.000 0.000 0.000 0.000 0.000
HOPSPACK 0.056 0.000 0.000 0.000 0.000 0.000
IMFIL 0.111 0.167 0.111 0.111 0.111 0.111
MCS 0.333 0.278 0.278 0.278 0.222 0.222
NEWUOA 0.000 0.000 0.000 0.000 0.000 0.000
NOMAD 0.000 0.111 0.056 0.056 0.056 0.056
PSWARM 0.000 0.111 0.111 0.222 0.278 0.278
SID-PSM 0.000 0.278 0.222 0.278 0.278 0.278
SNOBFIT 0.000 0.056 0.056 0.056 0.056 0.111
TOMLAB/GLCCLUSTER 0.167 0.167 0.111 0.222 0.222 0.222
TOMLAB/LGO 0.056 0.222 0.444 0.500 0.500 0.444
TOMLAB/MULTIMIN 0.500 0.722 0.722 0.611 0.611 0.556
TOMLAB/OQNLP 0.056 0.111 0.167 0.222 0.222 0.222

Table 10 Fraction of nonconvex nonsmooth problems, as a function of allowable number
of function evaluations, for which a solver found the best solution among all solvers

8

3 Fraction of problems, as a function of τ values, for which starting
points were improved within 2500 function evaluations

τ

Solver 1E-1 1E-2 1E-3 1E-6 0E+0
ASA 0.488 0.424 0.384 0.327 0.124
BOBYQA 0.831 0.807 0.789 0.631 0.375
CMA-ES 0.867 0.757 0.637 0.542 0.325
DAKOTA/DIRECT 0.865 0.823 0.817 0.743 0.283
DAKOTA/EA 0.540 0.472 0.428 0.349 0.155
DAKOTA/PATTERN 0.725 0.562 0.512 0.432 0.201
DAKOTA/SOLIS-WETS 0.847 0.711 0.594 0.458 0.201
DFO 0.578 0.528 0.486 0.422 0.227
FMINSEARCH 0.614 0.512 0.480 0.446 0.265
GLOBAL 0.813 0.649 0.600 0.528 0.239
HOPSPACK 0.797 0.731 0.620 0.490 0.247
IMFIL 0.811 0.757 0.719 0.562 0.257
MCS 0.869 0.849 0.839 0.819 0.514
NEWUOA 0.815 0.733 0.709 0.558 0.333
NOMAD 0.647 0.568 0.532 0.474 0.279
PSWARM 0.835 0.669 0.582 0.490 0.295
SID-PSM 0.761 0.679 0.651 0.606 0.406
SNOBFIT 0.765 0.701 0.681 0.622 0.412
TOMLAB/GLCCLUSTER 0.992 0.984 0.978 0.859 0.492
TOMLAB/LGO 0.849 0.787 0.747 0.643 0.452
TOMLAB/MULTIMIN 0.994 0.984 0.982 0.888 0.512
TOMLAB/OQNLP 0.930 0.851 0.809 0.735 0.448

Table 11 Fraction of problems, as a function of τ values, for which starting points were
improved within 2500 function evaluations

9

τ

Solver 1E-1 1E-2 1E-3 1E-6 0E+0
ASA 0.103 0.000 0.000 0.000 0.000
BOBYQA 0.923 0.923 0.923 0.769 0.397
CMA-ES 0.846 0.756 0.436 0.256 0.103
DAKOTA/DIRECT 1.000 1.000 1.000 1.000 0.026
DAKOTA/EA 0.205 0.038 0.000 0.000 0.000
DAKOTA/PATTERN 0.705 0.321 0.179 0.077 0.026
DAKOTA/SOLIS-WETS 0.897 0.718 0.397 0.154 0.013
DFO 0.321 0.192 0.141 0.038 0.038
FMINSEARCH 0.436 0.179 0.090 0.077 0.077
GLOBAL 0.936 0.526 0.423 0.359 0.013
HOPSPACK 0.846 0.782 0.474 0.244 0.064
IMFIL 0.769 0.769 0.705 0.385 0.013
MCS 1.000 1.000 1.000 1.000 0.654
NEWUOA 0.859 0.795 0.782 0.590 0.359
NOMAD 0.423 0.244 0.179 0.115 0.064
PSWARM 0.872 0.538 0.321 0.128 0.013
SID-PSM 0.705 0.577 0.513 0.462 0.449
SNOBFIT 0.744 0.603 0.603 0.590 0.577
TOMLAB/GLCCLUSTER 1.000 1.000 1.000 1.000 0.603
TOMLAB/LGO 0.923 0.833 0.731 0.551 0.462
TOMLAB/MULTIMIN 1.000 1.000 1.000 1.000 0.513
TOMLAB/OQNLP 1.000 0.949 0.872 0.769 0.397

Table 12 Fraction of convex smooth problems, as a function of τ values, for which starting
points were improved within 2500 function evaluations

τ

Solver 1E-1 1E-2 1E-3 1E-6 0E+0
ASA 0.161 0.118 0.075 0.037 0.012
BOBYQA 0.571 0.528 0.509 0.205 0.019
CMA-ES 0.708 0.522 0.354 0.205 0.037
DAKOTA/DIRECT 0.665 0.565 0.559 0.534 0.043
DAKOTA/EA 0.236 0.143 0.106 0.043 0.025
DAKOTA/PATTERN 0.491 0.236 0.186 0.137 0.025
DAKOTA/SOLIS-WETS 0.696 0.472 0.286 0.137 0.019
DFO 0.267 0.230 0.174 0.112 0.025
FMINSEARCH 0.323 0.186 0.174 0.149 0.031
GLOBAL 0.615 0.342 0.267 0.205 0.037
HOPSPACK 0.534 0.447 0.329 0.143 0.031
IMFIL 0.615 0.522 0.472 0.248 0.043
MCS 0.634 0.584 0.571 0.571 0.081
NEWUOA 0.621 0.472 0.447 0.199 0.019
NOMAD 0.391 0.255 0.199 0.137 0.025
PSWARM 0.609 0.373 0.248 0.149 0.031
SID-PSM 0.534 0.410 0.385 0.323 0.043
SNOBFIT 0.509 0.460 0.435 0.342 0.031
TOMLAB/GLCCLUSTER 1.000 0.994 0.994 0.714 0.056
TOMLAB/LGO 0.615 0.509 0.491 0.342 0.050
TOMLAB/MULTIMIN 1.000 0.994 0.994 0.739 0.056
TOMLAB/OQNLP 0.820 0.627 0.547 0.497 0.062

Table 13 Fraction of convex nonsmooth problems, as a function of τ values, for which
starting points were improved within 2500 function evaluations

10

τ

Solver 1E-1 1E-2 1E-3 1E-6 0E+0
ASA 0.812 0.759 0.722 0.637 0.245
BOBYQA 0.967 0.951 0.931 0.886 0.629
CMA-ES 0.971 0.902 0.873 0.853 0.596
DAKOTA/DIRECT 0.951 0.939 0.931 0.816 0.531
DAKOTA/EA 0.829 0.820 0.776 0.678 0.298
DAKOTA/PATTERN 0.873 0.833 0.812 0.747 0.388
DAKOTA/SOLIS-WETS 0.927 0.857 0.845 0.776 0.392
DFO 0.849 0.816 0.800 0.759 0.437
FMINSEARCH 0.841 0.820 0.800 0.771 0.494
GLOBAL 0.902 0.890 0.873 0.816 0.457
HOPSPACK 0.951 0.894 0.849 0.800 0.461
IMFIL 0.947 0.902 0.882 0.833 0.490
MCS 0.980 0.976 0.963 0.943 0.780
NEWUOA 0.922 0.878 0.853 0.796 0.555
NOMAD 0.869 0.853 0.845 0.812 0.531
PSWARM 0.963 0.894 0.865 0.824 0.576
SID-PSM 0.914 0.878 0.861 0.841 0.653
SNOBFIT 0.927 0.886 0.861 0.837 0.637
TOMLAB/GLCCLUSTER 0.992 0.984 0.971 0.931 0.763
TOMLAB/LGO 0.971 0.947 0.918 0.873 0.731
TOMLAB/MULTIMIN 0.992 0.984 0.980 0.963 0.837
TOMLAB/OQNLP 0.980 0.967 0.959 0.894 0.739

Table 14 Fraction of nonconvex smooth problems, as a function of τ values, for which
starting points were improved within 2500 function evaluations

τ

Solver 1E-1 1E-2 1E-3 1E-6 0E+0
ASA 0.667 0.444 0.222 0.111 0.000
BOBYQA 0.889 0.833 0.778 0.389 0.000
CMA-ES 0.944 0.889 0.833 0.556 0.167
DAKOTA/DIRECT 0.889 0.778 0.778 0.500 0.167
DAKOTA/EA 0.778 0.556 0.444 0.111 0.056
DAKOTA/PATTERN 0.889 0.833 0.778 0.333 0.000
DAKOTA/SOLIS-WETS 0.889 0.833 0.778 0.333 0.056
DFO 0.778 0.722 0.500 0.278 0.000
FMINSEARCH 0.889 0.667 0.556 0.278 0.056
GLOBAL 0.833 0.667 0.611 0.222 0.056
HOPSPACK 0.833 0.833 0.722 0.444 0.056
IMFIL 0.889 0.833 0.778 0.444 0.056
MCS 0.889 0.833 0.833 0.556 0.167
NEWUOA 0.889 0.833 0.778 0.389 0.000
NOMAD 0.889 0.889 0.778 0.444 0.056
PSWARM 0.944 0.833 0.833 0.556 0.056
SID-PSM 0.944 0.833 0.778 0.556 0.111
SNOBFIT 0.944 0.778 0.778 0.333 0.056
TOMLAB/GLCCLUSTER 0.889 0.833 0.833 0.556 0.222
TOMLAB/LGO 0.944 0.889 0.778 0.611 0.222
TOMLAB/MULTIMIN 0.944 0.833 0.833 0.722 0.167
TOMLAB/OQNLP 0.944 0.833 0.833 0.556 0.167

Table 15 Fraction of nonconvex nonsmooth problems, as a function of τ values, for which
starting points were improved within 2500 function evaluations

11

4 Minimum number of solvers required to solve test problems for
various limits of function evaluations (best solver performance)

In the following tables, a zero value indicates that the corresponding solver
is not part of the minimum number of solvers. A nonzero value indicates
the percentage of problems solved by the solver. The sum of nonzero entries
across a column provides the percentage of problems that can be solved by the
minimal set of solvers for the corresponding number of function evaluations.

Iterations
Solver 100 200 500 1000 2000 2500
ASA 0.000 0.000 0.000 0.000 0.000 0.000
BOBYQA 0.000 0.002 0.004 0.000 0.000 0.000
CMA-ES 0.000 0.000 0.000 0.000 0.000 0.000
DAKOTA/DIRECT 0.000 0.000 0.000 0.000 0.000 0.000
DAKOTA/EA 0.000 0.000 0.000 0.000 0.000 0.000
DAKOTA/PATTERN 0.000 0.000 0.000 0.000 0.000 0.000
DAKOTA/SOLIS-WETS 0.000 0.000 0.000 0.000 0.000 0.000
DFO 0.000 0.000 0.000 0.000 0.000 0.000
FMINSEARCH 0.000 0.000 0.000 0.000 0.000 0.000
GLOBAL 0.000 0.000 0.000 0.000 0.000 0.000
HOPSPACK 0.000 0.000 0.000 0.000 0.000 0.000
IMFIL 0.004 0.006 0.012 0.012 0.014 0.014
MCS 0.281 0.018 0.002 0.002 0.002 0.000
NEWUOA 0.014 0.000 0.000 0.000 0.000 0.000
NOMAD 0.000 0.000 0.000 0.000 0.000 0.000
PSWARM 0.000 0.000 0.000 0.000 0.000 0.000
SID-PSM 0.042 0.060 0.006 0.026 0.006 0.004
SNOBFIT 0.002 0.004 0.068 0.002 0.002 0.002
TOMLAB/GLCCLUSTER 0.026 0.424 0.016 0.078 0.080 0.072
TOMLAB/LGO 0.004 0.008 0.006 0.004 0.002 0.002
TOMLAB/MULTIMIN 0.000 0.034 0.534 0.598 0.625 0.655
TOMLAB/OQNLP 0.000 0.002 0.028 0.012 0.024 0.020

Table 16 Minimum number of solvers required to solve test problems for various limits of
function evaluations (best solver performance)

12

Iterations
Solver 100 200 500 1000 2000 2500
ASA 0.000 0.000 0.000 0.000 0.000 0.000
BOBYQA 0.000 0.000 0.000 0.000 0.000 0.000
CMA-ES 0.000 0.000 0.000 0.000 0.000 0.000
DAKOTA/DIRECT 0.000 0.000 0.000 0.000 0.000 0.000
DAKOTA/EA 0.000 0.000 0.000 0.000 0.000 0.000
DAKOTA/PATTERN 0.000 0.000 0.000 0.000 0.000 0.000
DAKOTA/SOLIS-WETS 0.000 0.000 0.000 0.000 0.000 0.000
DFO 0.000 0.000 0.000 0.000 0.000 0.000
FMINSEARCH 0.000 0.000 0.000 0.000 0.000 0.000
GLOBAL 0.000 0.000 0.000 0.000 0.000 0.000
HOPSPACK 0.000 0.000 0.000 0.000 0.000 0.000
IMFIL 0.000 0.000 0.000 0.000 0.000 0.000
MCS 0.000 0.000 0.000 0.000 0.000 0.000
NEWUOA 0.000 0.000 0.000 0.000 0.000 0.000
NOMAD 0.000 0.000 0.000 0.000 0.000 0.000
PSWARM 0.000 0.000 0.000 0.000 0.000 0.000
SID-PSM 0.000 0.000 0.000 0.000 0.000 0.000
SNOBFIT 0.128 0.026 0.051 0.000 0.000 0.000
TOMLAB/GLCCLUSTER 0.013 0.385 0.590 0.756 0.782 0.795
TOMLAB/LGO 0.000 0.000 0.000 0.000 0.000 0.000
TOMLAB/MULTIMIN 0.000 0.000 0.000 0.000 0.000 0.000
TOMLAB/OQNLP 0.000 0.000 0.000 0.000 0.000 0.000

Table 17 Minimum number of solvers required to solve convex smooth test problems for
various limits of function evaluations (best solver performance)

Iterations
Solver 100 200 500 1000 2000 2500
ASA 0.000 0.000 0.000 0.000 0.000 0.000
BOBYQA 0.000 0.000 0.000 0.000 0.000 0.000
CMA-ES 0.000 0.000 0.000 0.000 0.000 0.000
DAKOTA/DIRECT 0.000 0.000 0.000 0.000 0.000 0.000
DAKOTA/EA 0.000 0.000 0.000 0.000 0.000 0.000
DAKOTA/PATTERN 0.000 0.000 0.000 0.000 0.000 0.000
DAKOTA/SOLIS-WETS 0.000 0.000 0.000 0.000 0.000 0.000
DFO 0.000 0.000 0.000 0.000 0.000 0.000
FMINSEARCH 0.000 0.000 0.000 0.000 0.000 0.000
GLOBAL 0.000 0.000 0.000 0.000 0.000 0.000
HOPSPACK 0.000 0.000 0.000 0.000 0.000 0.000
IMFIL 0.006 0.025 0.037 0.043 0.043 0.043
MCS 0.075 0.006 0.000 0.000 0.000 0.000
NEWUOA 0.025 0.000 0.000 0.000 0.000 0.000
NOMAD 0.000 0.000 0.000 0.000 0.000 0.000
PSWARM 0.000 0.000 0.000 0.000 0.000 0.000
SID-PSM 0.000 0.000 0.000 0.000 0.000 0.000
SNOBFIT 0.000 0.000 0.000 0.000 0.000 0.000
TOMLAB/GLCCLUSTER 0.012 0.199 0.311 0.062 0.062 0.056
TOMLAB/LGO 0.000 0.012 0.012 0.012 0.000 0.000
TOMLAB/MULTIMIN 0.000 0.037 0.056 0.366 0.416 0.447
TOMLAB/OQNLP 0.000 0.000 0.000 0.006 0.006 0.012

Table 18 Minimum number of solvers required to solve convex nonsmooth test problems
for various limits of function evaluations (best solver performance)

13

Iterations
Solver 100 200 500 1000 2000 2500
ASA 0.000 0.000 0.000 0.000 0.000 0.000
BOBYQA 0.008 0.008 0.012 0.000 0.000 0.000
CMA-ES 0.000 0.000 0.000 0.000 0.000 0.000
DAKOTA/DIRECT 0.000 0.000 0.000 0.000 0.000 0.000
DAKOTA/EA 0.000 0.000 0.000 0.000 0.000 0.000
DAKOTA/PATTERN 0.000 0.000 0.000 0.000 0.000 0.000
DAKOTA/SOLIS-WETS 0.000 0.000 0.000 0.000 0.000 0.000
DFO 0.000 0.000 0.000 0.000 0.000 0.000
FMINSEARCH 0.000 0.000 0.000 0.000 0.000 0.000
GLOBAL 0.000 0.000 0.000 0.000 0.000 0.000
HOPSPACK 0.000 0.000 0.000 0.000 0.000 0.000
IMFIL 0.000 0.000 0.000 0.000 0.000 0.000
MCS 0.490 0.657 0.004 0.004 0.004 0.000
NEWUOA 0.000 0.000 0.000 0.000 0.000 0.000
NOMAD 0.000 0.000 0.000 0.000 0.000 0.000
PSWARM 0.000 0.000 0.000 0.000 0.000 0.000
SID-PSM 0.041 0.037 0.069 0.073 0.073 0.065
SNOBFIT 0.000 0.000 0.000 0.008 0.004 0.004
TOMLAB/GLCCLUSTER 0.065 0.000 0.004 0.004 0.004 0.004
TOMLAB/LGO 0.012 0.020 0.000 0.000 0.000 0.000
TOMLAB/MULTIMIN 0.000 0.073 0.751 0.796 0.800 0.812
TOMLAB/OQNLP 0.000 0.000 0.029 0.012 0.024 0.024

Table 19 Minimum number of solvers required to solve nonconvex smooth test problems
for various limits of function evaluations (best solver performance)

Iterations
Solver 100 200 500 1000 2000 2500
ASA 0.000 0.000 0.000 0.000 0.000 0.000
BOBYQA 0.000 0.000 0.000 0.000 0.000 0.000
CMA-ES 0.000 0.000 0.000 0.444 0.444 0.500
DAKOTA/DIRECT 0.000 0.000 0.000 0.000 0.000 0.000
DAKOTA/EA 0.000 0.000 0.000 0.000 0.000 0.000
DAKOTA/PATTERN 0.000 0.000 0.000 0.000 0.000 0.000
DAKOTA/SOLIS-WETS 0.000 0.000 0.000 0.000 0.000 0.000
DFO 0.000 0.000 0.000 0.000 0.000 0.000
FMINSEARCH 0.000 0.000 0.000 0.000 0.000 0.000
GLOBAL 0.000 0.000 0.000 0.000 0.000 0.000
HOPSPACK 0.000 0.000 0.000 0.000 0.000 0.000
IMFIL 0.056 0.056 0.056 0.056 0.056 0.056
MCS 0.000 0.000 0.000 0.000 0.000 0.000
NEWUOA 0.222 0.000 0.000 0.000 0.056 0.000
NOMAD 0.000 0.056 0.056 0.000 0.000 0.000
PSWARM 0.000 0.000 0.000 0.000 0.000 0.000
SID-PSM 0.000 0.000 0.000 0.000 0.000 0.000
SNOBFIT 0.000 0.000 0.000 0.000 0.000 0.000
TOMLAB/GLCCLUSTER 0.000 0.000 0.000 0.000 0.000 0.000
TOMLAB/LGO 0.000 0.000 0.389 0.000 0.000 0.000
TOMLAB/MULTIMIN 0.056 0.333 0.000 0.056 0.000 0.056
TOMLAB/OQNLP 0.000 0.000 0.000 0.000 0.000 0.000

Table 20 Minimum number of solvers required to solve nonconvex nonsmooth test problems
for various limits of function evaluations (best solver performance)

14

5 Fraction of problems solved as a function of problem size

Iterations
Solver 100 200 500 1000 2000 2500
ASA 0.071 0.081 0.081 0.091 0.101 0.101
BOBYQA 0.343 0.515 0.566 0.586 0.586 0.586
CMA-ES 0.162 0.566 0.717 0.747 0.747 0.747
DAKOTA/DIRECT 0.384 0.404 0.404 0.404 0.404 0.404
DAKOTA/EA 0.101 0.131 0.141 0.152 0.162 0.162
DAKOTA/PATTERN 0.162 0.242 0.242 0.242 0.253 0.253
DAKOTA/SOLIS-WETS 0.172 0.303 0.323 0.323 0.323 0.333
DFO 0.202 0.222 0.465 0.545 0.576 0.586
FMINSEARCH 0.384 0.707 0.727 0.727 0.727 0.727
GLOBAL 0.354 0.465 0.465 0.475 0.475 0.475
HOPSPACK 0.475 0.556 0.556 0.556 0.556 0.556
IMFIL 0.263 0.343 0.343 0.343 0.343 0.343
MCS 0.808 0.889 0.899 0.899 0.899 0.909
NEWUOA 0.273 0.475 0.525 0.535 0.535 0.535
NOMAD 0.242 0.626 0.646 0.657 0.667 0.677
PSWARM 0.121 0.404 0.636 0.697 0.707 0.717
SID-PSM 0.394 0.727 0.737 0.747 0.747 0.758
SNOBFIT 0.303 0.485 0.606 0.657 0.707 0.727
TOMLAB/GLCCLUSTER 0.717 0.798 0.879 0.899 0.899 0.949
TOMLAB/LGO 0.444 0.879 0.879 0.899 0.899 0.899
TOMLAB/MULTIMIN 0.616 0.879 0.939 0.939 0.939 0.939
TOMLAB/OQNLP 0.434 0.788 0.869 0.879 0.889 0.899

Table 21 Fraction of problems with one to two variables that were solved

15

Iterations
Solver 100 200 500 1000 2000 2500
ASA 0.015 0.015 0.015 0.015 0.015 0.015
BOBYQA 0.143 0.263 0.331 0.346 0.361 0.368
CMA-ES 0.038 0.120 0.263 0.323 0.406 0.474
DAKOTA/DIRECT 0.105 0.135 0.143 0.143 0.143 0.143
DAKOTA/EA 0.023 0.023 0.030 0.030 0.030 0.030
DAKOTA/PATTERN 0.038 0.083 0.083 0.090 0.098 0.098
DAKOTA/SOLIS-WETS 0.030 0.075 0.090 0.090 0.090 0.090
DFO 0.060 0.083 0.105 0.120 0.150 0.226
FMINSEARCH 0.030 0.211 0.301 0.338 0.338 0.338
GLOBAL 0.045 0.113 0.120 0.120 0.120 0.120
HOPSPACK 0.083 0.211 0.233 0.233 0.241 0.241
IMFIL 0.083 0.203 0.203 0.203 0.203 0.203
MCS 0.338 0.549 0.579 0.624 0.624 0.624
NEWUOA 0.083 0.195 0.256 0.301 0.323 0.323
NOMAD 0.053 0.150 0.263 0.301 0.331 0.331
PSWARM 0.030 0.113 0.165 0.211 0.241 0.278
SID-PSM 0.218 0.429 0.459 0.466 0.466 0.481
SNOBFIT 0.218 0.271 0.293 0.338 0.376 0.391
TOMLAB/GLCCLUSTER 0.383 0.549 0.602 0.617 0.662 0.692
TOMLAB/LGO 0.158 0.466 0.602 0.654 0.669 0.692
TOMLAB/MULTIMIN 0.083 0.586 0.684 0.744 0.752 0.782
TOMLAB/OQNLP 0.173 0.368 0.481 0.541 0.541 0.541

Table 22 Fraction of problems with three to nine variables that were solved

Iterations
Solver 100 200 500 1000 2000 2500
ASA 0.000 0.000 0.000 0.000 0.000 0.000
BOBYQA 0.025 0.092 0.168 0.252 0.294 0.328
CMA-ES 0.000 0.008 0.025 0.025 0.050 0.084
DAKOTA/DIRECT 0.059 0.067 0.076 0.076 0.076 0.076
DAKOTA/EA 0.000 0.000 0.000 0.000 0.000 0.000
DAKOTA/PATTERN 0.000 0.017 0.017 0.025 0.025 0.025
DAKOTA/SOLIS-WETS 0.000 0.008 0.008 0.017 0.017 0.017
DFO 0.008 0.025 0.025 0.025 0.025 0.025
FMINSEARCH 0.000 0.008 0.008 0.008 0.008 0.017
GLOBAL 0.000 0.017 0.025 0.025 0.025 0.025
HOPSPACK 0.008 0.025 0.050 0.059 0.076 0.084
IMFIL 0.017 0.042 0.084 0.118 0.126 0.151
MCS 0.084 0.277 0.378 0.395 0.420 0.437
NEWUOA 0.000 0.059 0.143 0.193 0.252 0.286
NOMAD 0.000 0.008 0.025 0.034 0.042 0.042
PSWARM 0.000 0.008 0.017 0.025 0.034 0.042
SID-PSM 0.017 0.176 0.277 0.378 0.395 0.403
SNOBFIT 0.084 0.218 0.277 0.277 0.277 0.277
TOMLAB/GLCCLUSTER 0.059 0.412 0.605 0.630 0.647 0.647
TOMLAB/LGO 0.008 0.143 0.261 0.311 0.395 0.412
TOMLAB/MULTIMIN 0.008 0.218 0.462 0.622 0.664 0.681
TOMLAB/OQNLP 0.025 0.176 0.336 0.403 0.462 0.479

Table 23 Fraction of problems with 10 to 30 variables that were solved

16

Iterations
Solver 100 200 500 1000 2000 2500
ASA 0.000 0.000 0.000 0.000 0.000 0.000
BOBYQA 0.000 0.033 0.033 0.053 0.053 0.086
CMA-ES 0.000 0.000 0.000 0.000 0.007 0.013
DAKOTA/DIRECT 0.040 0.040 0.040 0.040 0.040 0.040
DAKOTA/EA 0.000 0.000 0.000 0.000 0.000 0.000
DAKOTA/PATTERN 0.000 0.000 0.000 0.000 0.000 0.000
DAKOTA/SOLIS-WETS 0.000 0.000 0.000 0.000 0.000 0.000
DFO 0.000 0.000 0.000 0.000 0.000 0.000
FMINSEARCH 0.000 0.000 0.000 0.000 0.000 0.000
GLOBAL 0.000 0.000 0.000 0.000 0.000 0.000
HOPSPACK 0.000 0.000 0.013 0.020 0.020 0.026
IMFIL 0.000 0.013 0.026 0.033 0.046 0.060
MCS 0.040 0.060 0.073 0.152 0.219 0.219
NEWUOA 0.000 0.000 0.007 0.020 0.033 0.033
NOMAD 0.000 0.000 0.000 0.000 0.000 0.000
PSWARM 0.000 0.000 0.000 0.000 0.000 0.000
SID-PSM 0.000 0.013 0.013 0.020 0.020 0.020
SNOBFIT 0.000 0.000 0.066 0.099 0.099 0.099
TOMLAB/GLCCLUSTER 0.000 0.020 0.093 0.219 0.285 0.325
TOMLAB/LGO 0.000 0.020 0.020 0.020 0.026 0.066
TOMLAB/MULTIMIN 0.000 0.040 0.119 0.159 0.225 0.278
TOMLAB/OQNLP 0.000 0.026 0.046 0.093 0.139 0.185

Table 24 Fraction of problems with 31 to 300 variables that were solved

17

1 to 2 variables 3 to 9 variables 10 to 30 variables 31 to 300 variables
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TOMLAB/MULTIMIN

TOMLAB/GLCCLUSTER

MCS

TOMLAB/OQNLP

SNOBFIT

BOBYQA

TOMLAB/LGO

IMFIL

NEWUOA

DAKOTA/DIRECT

SID−PSM

HOPSPACK

CMA−ES

ASA

NOMAD

DFO

FMINSEARCH

PSWARM

DAKOTA/EA

DAKOTA/PATTERN

DAKOTA/SOLIS−WETS

GLOBAL

Fig. 1 Fraction of all problems, as a function of problem size, for which a solver found the
best solution among all solvers

6 Best, mean, median and worst results over 10 runs and after
2500 function evaluations

1
8

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

convex/smooth

convex/nonsmooth

nonconvex/smooth

nonconvex/nonsmooth

1 to 2 variables

3 to 9 variables

10 to 30 variables

31 to 300 variables

all problems

b
e

s
t

m
e

a
n

m
e

d
ia

n

w
o

rs
t

F
ig
.
2

B
est,

m
ea
n
,
m
ed

ia
n
a
n
d
w
o
rst

resu
lts

ov
er

1
0
ru

n
s
a
n
d
a
fter

2
5
0
0
fu
n
ctio

n
eva

lu
a
-

tio
n
s
fo
r
so
lv
er

A
S
A

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

convex/smooth

convex/nonsmooth

nonconvex/smooth

nonconvex/nonsmooth

1 to 2 variables

3 to 9 variables

10 to 30 variables

31 to 300 variables

all problems

b
e

s
t

m
e

a
n

m
e

d
ia

n

w
o

rs
t

F
ig
.
3

B
est,

m
ea
n
,
m
ed

ia
n
a
n
d
w
o
rst

resu
lts

ov
er

1
0
ru

n
s
a
n
d
a
fter

2
5
0
0
fu
n
ctio

n
eva

lu
a
-

tio
n
s
fo
r
so
lv
er

N
O
M
A
D

1
9

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

convex/smooth

convex/nonsmooth

nonconvex/smooth

nonconvex/nonsmooth

1 to 2 variables

3 to 9 variables

10 to 30 variables

31 to 300 variables

all problems

b
e

s
t

m
e

a
n

m
e

d
ia

n

w
o

rs
t

F
ig
.
4

B
est,

m
ea
n
,
m
ed

ia
n
a
n
d
w
o
rst

resu
lts

ov
er

1
0
ru

n
s
a
n
d
a
fter

2
5
0
0
fu
n
ctio

n
eva

lu
a
-

tio
n
s
fo
r
so
lv
er

D
F
O

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

convex/smooth

convex/nonsmooth

nonconvex/smooth

nonconvex/nonsmooth

1 to 2 variables

3 to 9 variables

10 to 30 variables

31 to 300 variables

all problems

b
e

s
t

m
e

a
n

m
e

d
ia

n

w
o

rs
t

F
ig
.
5

B
est,

m
ea
n
,
m
ed

ia
n
a
n
d
w
o
rst

resu
lts

ov
er

1
0
ru

n
s
a
n
d
a
fter

2
5
0
0
fu
n
ctio

n
eva

lu
a
-

tio
n
s
fo
r
so
lv
er

N
E
W

U
O
A

2
0

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

convex/smooth

convex/nonsmooth

nonconvex/smooth

nonconvex/nonsmooth

1 to 2 variables

3 to 9 variables

10 to 30 variables

31 to 300 variables

all problems

b
e

s
t

m
e

a
n

m
e

d
ia

n

w
o

rs
t

F
ig
.
6

B
est,

m
ea
n
,
m
ed

ia
n
a
n
d
w
o
rst

resu
lts

ov
er

1
0
ru

n
s
a
n
d
a
fter

2
5
0
0
fu
n
ctio

n
eva

lu
a
-

tio
n
s
fo
r
so
lv
er

F
M
IN

S
E
A
R
C
H

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

convex/smooth

convex/nonsmooth

nonconvex/smooth

nonconvex/nonsmooth

1 to 2 variables

3 to 9 variables

10 to 30 variables

31 to 300 variables

all problems

b
e

s
t

m
e

a
n

m
e

d
ia

n

w
o

rs
t

F
ig
.
7

B
est,

m
ea
n
,
m
ed

ia
n
a
n
d
w
o
rst

resu
lts

ov
er

1
0
ru

n
s
a
n
d
a
fter

2
5
0
0
fu
n
ctio

n
eva

lu
a
-

tio
n
s
fo
r
so
lv
er

IM
F
IL

2
1

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

convex/smooth

convex/nonsmooth

nonconvex/smooth

nonconvex/nonsmooth

1 to 2 variables

3 to 9 variables

10 to 30 variables

31 to 300 variables

all problems

b
e

s
t

m
e

a
n

m
e

d
ia

n

w
o

rs
t

F
ig
.
8

B
est,

m
ea
n
,
m
ed

ia
n
a
n
d
w
o
rst

resu
lts

ov
er

1
0
ru

n
s
a
n
d
a
fter

2
5
0
0
fu
n
ctio

n
eva

lu
a
-

tio
n
s
fo
r
so
lv
er

M
C
S

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

convex/smooth

convex/nonsmooth

nonconvex/smooth

nonconvex/nonsmooth

1 to 2 variables

3 to 9 variables

10 to 30 variables

31 to 300 variables

all problems

b
e

s
t

m
e

a
n

m
e

d
ia

n

w
o

rs
t

F
ig
.
9

B
est,

m
ea
n
,
m
ed

ia
n
a
n
d
w
o
rst

resu
lts

ov
er

1
0
ru

n
s
a
n
d
a
fter

2
5
0
0
fu
n
ctio

n
eva

lu
a
-

tio
n
s
fo
r
so
lv
er

S
ID

-P
S
M

2
2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

convex/smooth

convex/nonsmooth

nonconvex/smooth

nonconvex/nonsmooth

1 to 2 variables

3 to 9 variables

10 to 30 variables

31 to 300 variables

all problems

b
e

s
t

m
e

a
n

m
e

d
ia

n

w
o

rs
t

F
ig
.
1
0

B
est,

m
ea
n
,
m
ed

ia
n
a
n
d
w
o
rst

resu
lts

ov
er

1
0
ru

n
s
a
n
d
a
fter

2
5
0
0
fu
n
ctio

n
eva

lu
-

a
tio

n
s
fo
r
so
lv
er

P
S
W
A
R
M

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

convex/smooth

convex/nonsmooth

nonconvex/smooth

nonconvex/nonsmooth

1 to 2 variables

3 to 9 variables

10 to 30 variables

31 to 300 variables

all problems

b
e

s
t

m
e

a
n

m
e

d
ia

n

w
o

rs
t

F
ig
.
1
1

B
est,

m
ea
n
,
m
ed

ia
n
a
n
d
w
o
rst

resu
lts

ov
er

1
0
ru

n
s
a
n
d
a
fter

2
5
0
0
fu
n
ctio

n
eva

lu
-

a
tio

n
s
fo
r
so
lv
er

H
O
P
S
P
A
C
K

2
3

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

convex/smooth

convex/nonsmooth

nonconvex/smooth

nonconvex/nonsmooth

1 to 2 variables

3 to 9 variables

10 to 30 variables

31 to 300 variables

all problems

b
e

s
t

m
e

a
n

m
e

d
ia

n

w
o

rs
t

F
ig
.
1
2

B
est,

m
ea
n
,
m
ed

ia
n
a
n
d
w
o
rst

resu
lts

ov
er

1
0
ru

n
s
a
n
d
a
fter

2
5
0
0
fu
n
ctio

n
eva

lu
-

a
tio

n
s
fo
r
so
lv
er

D
A
K
O
T
A
/
D
IR

E
C
T

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

convex/smooth

convex/nonsmooth

nonconvex/smooth

nonconvex/nonsmooth

1 to 2 variables

3 to 9 variables

10 to 30 variables

31 to 300 variables

all problems

b
e

s
t

m
e

a
n

m
e

d
ia

n

w
o

rs
t

F
ig
.
1
3

B
est,

m
ea
n
,
m
ed

ia
n
a
n
d
w
o
rst

resu
lts

ov
er

1
0
ru

n
s
a
n
d
a
fter

2
5
0
0
fu
n
ctio

n
eva

lu
-

a
tio

n
s
fo
r
so
lv
er

D
A
K
O
T
A
/
E
A

2
4

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

convex/smooth

convex/nonsmooth

nonconvex/smooth

nonconvex/nonsmooth

1 to 2 variables

3 to 9 variables

10 to 30 variables

31 to 300 variables

all problems

b
e

s
t

m
e

a
n

m
e

d
ia

n

w
o

rs
t

F
ig
.
1
4

B
est,

m
ea
n
,
m
ed

ia
n
a
n
d
w
o
rst

resu
lts

ov
er

1
0
ru

n
s
a
n
d
a
fter

2
5
0
0
fu
n
ctio

n
eva

lu
-

a
tio

n
s
fo
r
so
lv
er

D
A
K
O
T
A
/
P
A
T
T
E
R
N

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

convex/smooth

convex/nonsmooth

nonconvex/smooth

nonconvex/nonsmooth

1 to 2 variables

3 to 9 variables

10 to 30 variables

31 to 300 variables

all problems

b
e

s
t

m
e

a
n

m
e

d
ia

n

w
o

rs
t

F
ig
.
1
5

B
est,

m
ea
n
,
m
ed

ia
n
a
n
d
w
o
rst

resu
lts

ov
er

1
0
ru

n
s
a
n
d
a
fter

2
5
0
0
fu
n
ctio

n
eva

lu
-

a
tio

n
s
fo
r
so
lv
er

D
A
K
O
T
A
/
S
O
L
IS
-W

E
T
S

2
5

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

convex/smooth

convex/nonsmooth

nonconvex/smooth

nonconvex/nonsmooth

1 to 2 variables

3 to 9 variables

10 to 30 variables

31 to 300 variables

all problems

b
e

s
t

m
e

a
n

m
e

d
ia

n

w
o

rs
t

F
ig
.
1
6

B
est,

m
ea
n
,
m
ed

ia
n
a
n
d
w
o
rst

resu
lts

ov
er

1
0
ru

n
s
a
n
d
a
fter

2
5
0
0
fu
n
ctio

n
eva

lu
-

a
tio

n
s
fo
r
so
lv
er

S
N
O
B
F
IT

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

convex/smooth

convex/nonsmooth

nonconvex/smooth

nonconvex/nonsmooth

1 to 2 variables

3 to 9 variables

10 to 30 variables

31 to 300 variables

all problems

b
e

s
t

m
e

a
n

m
e

d
ia

n

w
o

rs
t

F
ig
.
1
7

B
est,

m
ea
n
,
m
ed

ia
n
a
n
d
w
o
rst

resu
lts

ov
er

1
0
ru

n
s
a
n
d
a
fter

2
5
0
0
fu
n
ctio

n
eva

lu
-

a
tio

n
s
fo
r
so
lv
er

T
O
M
L
A
B
/
L
G
O

2
6

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

convex/smooth

convex/nonsmooth

nonconvex/smooth

nonconvex/nonsmooth

1 to 2 variables

3 to 9 variables

10 to 30 variables

31 to 300 variables

all problems

b
e

s
t

m
e

a
n

m
e

d
ia

n

w
o

rs
t

F
ig
.
1
8

B
est,

m
ea
n
,
m
ed

ia
n
a
n
d
w
o
rst

resu
lts

ov
er

1
0
ru

n
s
a
n
d
a
fter

2
5
0
0
fu
n
ctio

n
eva

lu
-

a
tio

n
s
fo
r
so
lv
er

C
M
A
-E

S

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

convex/smooth

convex/nonsmooth

nonconvex/smooth

nonconvex/nonsmooth

1 to 2 variables

3 to 9 variables

10 to 30 variables

31 to 300 variables

all problems

b
e

s
t

m
e

a
n

m
e

d
ia

n

w
o

rs
t

F
ig
.
1
9

B
est,

m
ea
n
,
m
ed

ia
n
a
n
d
w
o
rst

resu
lts

ov
er

1
0
ru

n
s
a
n
d
a
fter

2
5
0
0
fu
n
ctio

n
eva

lu
-

a
tio

n
s
fo
r
so
lv
er

G
L
O
B
A
L

2
7

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

convex/smooth

convex/nonsmooth

nonconvex/smooth

nonconvex/nonsmooth

1 to 2 variables

3 to 9 variables

10 to 30 variables

31 to 300 variables

all problems

b
e

s
t

m
e

a
n

m
e

d
ia

n

w
o

rs
t

F
ig
.
2
0

B
est,

m
ea
n
,
m
ed

ia
n
a
n
d
w
o
rst

resu
lts

ov
er

1
0
ru

n
s
a
n
d
a
fter

2
5
0
0
fu
n
ctio

n
eva

lu
-

a
tio

n
s
fo
r
so
lv
er

B
O
B
Y
Q
A

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

convex/smooth

convex/nonsmooth

nonconvex/smooth

nonconvex/nonsmooth

1 to 2 variables

3 to 9 variables

10 to 30 variables

31 to 300 variables

all problems

b
e

s
t

m
e

a
n

m
e

d
ia

n

w
o

rs
t

F
ig
.
2
1

B
est,

m
ea
n
,
m
ed

ia
n
a
n
d
w
o
rst

resu
lts

ov
er

1
0
ru

n
s
a
n
d
a
fter

2
5
0
0
fu
n
ctio

n
eva

lu
-

a
tio

n
s
fo
r
so
lv
er

T
O
M
L
A
B
/
M
U
L
T
IM

IN

2
8

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

convex/smooth

convex/nonsmooth

nonconvex/smooth

nonconvex/nonsmooth

1 to 2 variables

3 to 9 variables

10 to 30 variables

31 to 300 variables

all problems

b
e

s
t

m
e

a
n

m
e

d
ia

n

w
o

rs
t

F
ig
.
2
2

B
est,

m
ea
n
,
m
ed

ia
n
a
n
d
w
o
rst

resu
lts

ov
er

1
0
ru

n
s
a
n
d
a
fter

2
5
0
0
fu
n
ctio

n
eva

lu
-

a
tio

n
s
fo
r
so
lv
er

T
O
M
L
A
B
/
O
Q
N
L
P

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

convex/smooth

convex/nonsmooth

nonconvex/smooth

nonconvex/nonsmooth

1 to 2 variables

3 to 9 variables

10 to 30 variables

31 to 300 variables

all problems

b
e

s
t

m
e

a
n

m
e

d
ia

n

w
o

rs
t

F
ig
.
2
3

B
est,

m
ea
n
,
m
ed

ia
n
a
n
d
w
o
rst

resu
lts

ov
er

1
0
ru

n
s
a
n
d
a
fter

2
5
0
0
fu
n
ctio

n
eva

lu
-

a
tio

n
s
fo
r
so
lv
er

T
O
M
L
A
B
/
G
L
C
C
L
U
S
T
E
R

29

7 Refinement ability.

Number of variables
Solver 1 to 2 variables 3 to 9 variables 10 to 30 variables 31 to 300 variables
ASA 0.838 0.474 0.067 0.066
BOBYQA 0.960 0.880 0.655 0.510
CMA-ES 0.980 0.940 0.672 0.318
DAKOTA/DIRECT 0.939 0.684 0.471 0.132
DAKOTA/EA 0.939 0.594 0.118 0.073
DAKOTA/PATTERN 0.939 0.767 0.555 0.106
DAKOTA/SOLIS-WETS 0.960 0.850 0.639 0.258
DFO 0.960 0.835 0.597 0.086
FMINSEARCH 0.960 0.692 0.437 0.146
GLOBAL 0.970 0.835 0.336 0.073
HOPSPACK 0.899 0.662 0.605 0.331
IMFIL 0.949 0.872 0.756 0.477
MCS 0.980 0.789 0.613 0.351
NEWUOA 0.970 0.895 0.672 0.490
NOMAD 0.960 0.835 0.479 0.086
PSWARM 0.970 0.835 0.622 0.179
SID-PSM 0.980 0.940 0.655 0.232
SNOBFIT 0.980 0.917 0.588 0.166
TOMLAB/GLCCLUSTER 0.970 0.955 0.697 0.391
TOMLAB/LGO 0.980 0.962 0.689 0.464
TOMLAB/MULTIMIN 0.960 0.917 0.689 0.391
TOMLAB/OQNLP 0.970 0.925 0.689 0.530

Table 25 Fraction of all problems solved from a near-optimal solution

30

Number of variables
Solver 1 to 2 variables 3 to 9 variables 10 to 30 variables 31 to 300 variables
ASA 0.000 1.000 0.000 0.000
BOBYQA 0.000 1.000 0.833 0.524
CMA-ES 0.000 1.000 0.833 0.190
DAKOTA/DIRECT 0.000 1.000 0.500 0.095
DAKOTA/EA 0.000 1.000 0.033 0.000
DAKOTA/PATTERN 0.000 1.000 0.600 0.000
DAKOTA/SOLIS-WETS 0.000 1.000 0.833 0.095
DFO 0.000 1.000 0.833 0.000
FMINSEARCH 0.000 1.000 0.767 0.238
GLOBAL 0.000 1.000 0.333 0.000
HOPSPACK 0.000 1.000 0.833 0.286
IMFIL 0.000 1.000 0.833 0.524
MCS 0.000 1.000 0.833 0.452
NEWUOA 0.000 1.000 0.833 0.548
NOMAD 0.000 1.000 0.533 0.000
PSWARM 0.000 1.000 0.767 0.071
SID-PSM 0.000 1.000 0.767 0.143
SNOBFIT 0.000 1.000 0.833 0.286
TOMLAB/GLCCLUSTER 0.000 1.000 0.833 0.548
TOMLAB/LGO 0.000 1.000 0.833 0.500
TOMLAB/MULTIMIN 0.000 1.000 0.833 0.548
TOMLAB/OQNLP 0.000 1.000 0.833 0.524

Table 26 Fraction of convex smooth problems solved from a near-optimal solution

Number of variables
Solver 1 to 2 variables 3 to 9 variables 10 to 30 variables 31 to 300 variables
ASA 0.556 0.368 0.034 0.014
BOBYQA 0.667 0.684 0.424 0.324
CMA-ES 0.778 1.000 0.492 0.297
DAKOTA/DIRECT 0.778 0.632 0.407 0.068
DAKOTA/EA 0.778 0.579 0.034 0.027
DAKOTA/PATTERN 0.778 0.737 0.458 0.081
DAKOTA/SOLIS-WETS 0.778 0.842 0.458 0.270
DFO 0.778 0.579 0.356 0.027
FMINSEARCH 0.778 0.632 0.085 0.027
GLOBAL 0.778 0.684 0.220 0.027
HOPSPACK 0.778 0.632 0.407 0.270
IMFIL 0.778 0.737 0.627 0.378
MCS 0.778 0.579 0.390 0.203
NEWUOA 0.778 0.737 0.458 0.338
NOMAD 0.778 0.737 0.339 0.041
PSWARM 0.778 0.737 0.458 0.176
SID-PSM 0.778 0.842 0.475 0.108
SNOBFIT 0.778 0.895 0.390 0.041
TOMLAB/GLCCLUSTER 0.778 1.000 0.508 0.311
TOMLAB/LGO 0.778 0.947 0.492 0.324
TOMLAB/MULTIMIN 0.778 1.000 0.542 0.216
TOMLAB/OQNLP 0.778 1.000 0.492 0.338

Table 27 Fraction of convex nonsmooth problems solved from a near-optimal solution

31

Number of variables
Solver 1 to 2 variables 3 to 9 variables 10 to 30 variables 31 to 300 variables
ASA 0.872 0.454 0.222 0.257
BOBYQA 0.988 0.938 1.000 0.886
CMA-ES 1.000 0.918 0.889 0.514
DAKOTA/DIRECT 0.953 0.691 0.630 0.314
DAKOTA/EA 0.953 0.567 0.407 0.257
DAKOTA/PATTERN 0.953 0.763 0.778 0.286
DAKOTA/SOLIS-WETS 0.977 0.825 0.852 0.429
DFO 0.988 0.897 0.889 0.314
FMINSEARCH 0.977 0.680 0.852 0.286
GLOBAL 0.988 0.845 0.593 0.257
HOPSPACK 0.919 0.680 0.852 0.514
IMFIL 0.965 0.897 1.000 0.629
MCS 1.000 0.835 0.926 0.543
NEWUOA 0.988 0.918 1.000 0.743
NOMAD 0.977 0.825 0.778 0.286
PSWARM 0.988 0.825 0.852 0.314
SID-PSM 1.000 0.959 0.963 0.600
SNOBFIT 1.000 0.918 0.778 0.286
TOMLAB/GLCCLUSTER 0.988 0.969 1.000 0.371
TOMLAB/LGO 1.000 0.959 1.000 0.714
TOMLAB/MULTIMIN 0.977 0.897 0.926 0.571
TOMLAB/OQNLP 0.988 0.907 1.000 0.943

Table 28 Fraction of nonconvex smooth problems solved from a near-optimal solution

Number of variables
Solver 1 to 2 variables 3 to 9 variables 10 to 30 variables 31 to 300 variables
ASA 0.750 0.545 0.000 0.000
BOBYQA 1.000 0.636 0.333 0.000
CMA-ES 1.000 1.000 0.667 0.000
DAKOTA/DIRECT 1.000 0.545 0.000 0.000
DAKOTA/EA 1.000 0.636 0.000 0.000
DAKOTA/PATTERN 1.000 0.727 0.000 0.000
DAKOTA/SOLIS-WETS 1.000 1.000 0.333 0.000
DFO 0.750 0.636 0.333 0.000
FMINSEARCH 1.000 0.727 0.333 0.000
GLOBAL 1.000 0.909 0.333 0.000
HOPSPACK 0.750 0.364 0.000 0.000
IMFIL 1.000 0.818 0.333 0.000
MCS 1.000 0.636 0.000 0.000
NEWUOA 1.000 0.909 0.333 0.000
NOMAD 1.000 1.000 0.000 0.000
PSWARM 1.000 1.000 0.333 0.000
SID-PSM 1.000 0.909 0.333 0.000
SNOBFIT 1.000 0.909 0.333 0.000
TOMLAB/GLCCLUSTER 1.000 0.727 0.333 0.000
TOMLAB/LGO 1.000 1.000 0.333 0.000
TOMLAB/MULTIMIN 1.000 0.909 0.000 0.000
TOMLAB/OQNLP 1.000 0.909 0.333 0.000

Table 29 Fraction of nonconvex nonsmooth problems solved from a near-optimal solution

	derivative-free.pdf
	Introduction
	Local search methods
	Global search algorithms
	Historical overview and some algorithmic insights
	Derivative-free optimization software
	Illustrative example: camel6
	Computational comparisons
	Conclusions

	dfo supplement.pdf

