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Abstract

We discuss the e�ciency and implementation details of an algorithm for �nding the global
minimum of a multi-variate function subject to simple bounds on the variables. The algorithm
DIRECT, developed by D. R. Jones, C. D. Perttunen and B. E. Stuckman, is a modi�cation of
the standard Lipschitzian approach that eliminates the need to specify a Lipschitz constant. We
have implemented the DIRECT algorithm in Matlab and the e�ciency of our implementation
is analyzed by comparing it to the results of Jones's implementation on nine standard test
problems for box-bounded global optimization. In �fteen out of eighteen runs the results are
in favor of our implementation. We also present performance results for our implementation
on the more challenging test set used in the �rst contest on evolutionary optimization (ICEO).
An application from computational �nance is also discussed.

Our DIRECT code is available in two versions. One, glbSolve, is integrated in the Matlab
optimization environment TOMLAB, as part of the toolbox NLPLIB TB for nonlinear pro-
gramming and parameter estimation. The other, gblSolve, is a stand-alone version. Both
TOMLAB and gblSolve are free for academic use and downloadable at the home page of the
Applied Optimization and Modeling group, see the URL: http://www.ima.mdh.se/tom.

Keywords: Global Optimization, Lipschitzian Optimization, DIRECT, Matlab, Software Engi-
neering, Mathematical Software, Optimization, Algorithms.

AMS Subject Classi�cation: 90C26, 90C30, 90C99

1 Introduction

TOMLAB [4, 7], developed by the Applied Optimization and Modeling group (TOM) at M�alardalen
University, is an open Matlab environment for research and teaching in optimization. TOMLAB is
based on NLPLIB TB [5], a Matlab toolbox for nonlinear programming and parameter estimation,
and OPERA TB [6], a Matlab toolbox for linear and discrete optimization. Although TOMLAB
includes more than 65 di�erent optimization algorithms, until recently there has been no routine
included that handles global optimization problems. Therefore the DIRECT algorithm focused our
interest.

DIRECT is an algorithm developed by Donald R. Jones et al. [9] for �nding the global minimum of a
multi-variate function subject to simple bounds, using no derivative information. The algorithm is
a modi�cation of the standard Lipschitzian approach that eliminates the need to specify a Lipschitz
constant. The idea is to carry out simultaneous searches using all possible constants from zero
to in�nity. In [9] they introduce a di�erent way of looking at the Lipschitz constant. Really, the
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Lipschitz constant is viewed as a weighting parameter that indicate how much emphasis to place on
global versus local search. In standard Lipschitzian methods, this constant is usually large because
it must be equal to or exceed the maximum rate of change of the objective function. As a result,
these methods place a high emphasis on global search, which leads to slow convergence. In contrast,
the DIRECT algorithm carries out simultaneous searches using all possible constants, and therefore
operates on both the global and local level.

Now de�ne some notation to be used throughout this paper, in order to avoid confusion. By
DIRECT we mean the algorithm described in [9]. When we talk in comparative terms we will by
DIRECT mean the implementation made by Jones, Perttunen and Stuckman. Our implementation
of the DIRECT algorithm (including modi�cations) will be referred to as glbSolve, which also is the
name of the corresponding Matlab routine included in the NLPLIB TB. The stand-alone version
gblSolve is identical to glbSolve, except for the input and output format.

This paper is organized as follows. In Section 2 we present some of the key ideas behind the DIRECT
algorithm. We will also give a formal description, following the implementation in glbSolve. An
important phase in the algorithm is to �nd the extreme points on the lower convex hull of a set
of points in the plane. A formal description of the technique we use to solve this problem, and a
presentation of other implementation details, are also given in Section 2. In Section 3 we de�ne
the part of the test problems used in the comparison to Jones's implementation. In Section 4 we
present the results of the comparison of glbSolve versus DIRECT together with our performance
results for the ICEO problems. We also present a graphical illustration of the search behavior. A
practical application from computational �nance is discussed in Section 5. Section 6 summarizes
the results from our point of view. In Appendix A an example of the use of the stand-alone version
gblSolve is described and in Appendix B the full Matlab code is given.

2 The Algorithm

In the �rst part of this section we discuss some of the key ideas of the DIRECT algorithm. We will
not give a complete description and motivation for those ideas, instead see [9], where a complete and
well-written presentation is given. Some details in our implementation, which are not described in
[9], will also be pointed out. In the second part of this section a formal description of the algorithm
is given, which is close to our real implementation in glbSolve.

DIRECT deals with problems on the form

min
x

f(x)

s:t: xL � x � xU ;

where f 2 R and x; xL; xU 2 Rn . It is guaranteed to converge to the global optimal function value,
if the objective function f is continuous or at least continuous in the neighborhood of a global
optimum. This could be guaranteed since, as the number of iterations goes to in�nity, the set of
points sampled by DIRECT form a dense subset of the unit hypercube. In other words, given any
point x in the unit hypercube and any � > 0, DIRECT will eventually sample a point (compute the
objective function) within a distance � of x.

The �rst step in the DIRECT algorithm is to transform the search space to be the unit hypercube.
The function is then sampled at the center-point of this cube. Computing the function value at
the center-point instead of doing it at the vertices is an advantage when dealing with problems
in higher dimensions. The hypercube is then divided into smaller hyperrectangles whose center-
points are also sampled. Instead of using a Lipschitz constant when determining the rectangles
to sample next, DIRECT identi�es a set of potentially optimal rectangles in each iteration. All
potentially optimal rectangles are further divided into smaller rectangles whose center-points are
sampled. When no Lipschitz constant is used, there is no natural way of de�ning convergence
(except when the optimal function value is known as in the test problems). Instead, the procedure
described above is performed for a prede�ned number of iterations. In our implementation it is
possible to restart the optimization with the �nal status of all parameters from the previous run.
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As an example, apply glbSolve on a certain problem for 50 iterations. Then run e.g. 40 iterations
more. The result is the same as a run for 90 iterations in the �rst place.

The problem of �nding the extreme points on the lower convex hull of a set of points in the plane,
is introduced as a subproblem when to determine the set of all potentially optimal rectangles. In
glbSolve, the extreme points on the lower convex hull is identi�ed by use of the subroutine conhull.
As a result of the technique we use in our implementation of DIRECT, conhull will assume that the
points are sorted by increasing abscissas. The implementation of conhull is based on the algorithm
GRAHAMHULL in [10, page 108], with the modi�cations proposed on page 109. The initial step in
GRAHAMHULL is to sort the points by increasing abscissas. As mentioned above this is already
done so this initial step is skipped. The Algorithm conhull is stated as follows.

Algorithm conhull

The points (xi; yi), i = 1; 2; 3; :::;m are given with x1 � x2 � ::: � xm.
Set h = (1; 2; :::;m).
if m � 3 then
Set START = 1, v = START , w = m and flag = 0.
while next(v) 6= START or flag = 0 do
if next(v) = w then

Set flag = 0.
end if

Set a = v, b = next(v) and c = next(next(v)).

Set A =

0
@ xa ya 1

xb yb 1
xc yc 1

1
A.

if det(A) � 0 then
Set leftturn = 0.

else

Set leftturn = 1.
end if

if leftturn then

Set v = next(v).
else

Set j = next(v).
Set x = (x1; x2; :::; xj�1; xj+1; :::; xm), y = (y1; y2; :::; yj�1; yj+1; :::; ym) and

h = (h1; h2; :::; hj�1; hj+1; :::; hm).
Set m = m� 1, w = w � 1 and v = pred(v).

end if

end while

end if

The index vector h contains the indices to the points which lies on the boundary of the convex hull.
The function next(v) returns v + 1 if v < m and 1 if v = m. The function pred(v) returns v � 1 if
v > 1 and m if v = 1.

Below is a formal description of our DIRECT algorithm, the Algorithm glbSolve, which in close detail
describes our implementation in the Matlab code glbSolve, see the code in Appendix B. Instead of
using the tree structure proposed in [9] for storing the information of each rectangle, we use a
straightforward matrix/index-vector technique. The notation used will be explained in Table 1.

Algorithm glbSolve

Set the global/local search weight parameter �, e.g. � = 10�4.
Set Ci1 =

1
2 and Li1 =

1
2 , i = 1; 2; 3; :::; n.

Set F1 = f(x), where xi = xLi + Ci1 (xUi � xLi), i = 1; 2; 3; :::; n.

Set D1 =

s
nP

k=1

L2
k.

Set fmin = F1 and imin = 1.
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Table 1: Notation used in the glbSolve algorithm description.

Parameter Explanation

C Matrix with all rectangle center-points.
D Vector with distances from center-point to the vertices.
F Vector with function values.
I Set of dimensions with maximum side length for the current rectangle.
L Matrix with all rectangle side lengths in each dimension.
S Index set of potentially optimal rectangles.
T The number of iterations to be performed.
fmin The current minimum function value.
imin Rectangle index.
� Global/local search weight parameter.
� New side length in the current divided dimension.

for t = 1; 2; 3; :::; T do

Set Ŝ =
n
j : Dj � Dimin

^ Fj = min
i
fFi : Di = Djg

o
.

De�ne � and � by letting the line y = �x0 + � pass through the points (Dimin
; Fimin

) and�
max
j

(Dj);min
i
fFi : Di = max

j
(Dj)g

�
.

Let ~S be the set of all rectangles j 2 Ŝ ful�lling Fj � �Dj + � + 10�12.

Let S be the set of all rectangles in ~S being extreme points in the convex hull of the setn
(Dj ; Fj) : j 2 ~S

o
.

while S 6= ; do
Select j as the �rst element in S, set S = S n fjg.
Let I be the set of dimensions with maximum rectangle side length, i.e.

I =

�
i : Dij = max

k
(Dkj)

�
.

Let � equal two-thirds of this maximum side length, i.e. � = 2
3 maxk

(Dkj).

for all i 2 I do

Set ck = Ckj , k = 1; 2; 3; :::; n.
Set ĉ = c+ �ei and ~c = c� �ei, where ei is the ith unit vector.
Compute f̂ = f(x̂) and ~f = f(~x) where x̂k = xLk + ĉk (xUk � xLk ) and
~xk = xLk + ~ck (xUk � xLk).

Set wi = min(f̂ ; ~f).
Set C =

�
C ĉ ~c

�
and F =

�
F f̂ ~f

�
.

end for

while I 6= ; do
Select the dimension i 2 I with the lowest value of wi and set I = I n fig.
Set Lij =

1
2�.

Let ĵ and ~j be the indices corresponding to the points ĉ and ~c, i.e. Fĵ = f̂ and F~j =
~f

Set Lkĵ = Lkj and Lk~j = Lkj , k = 1; 2; 3; :::; n.

Set Dj =

s
nP

k=1

L2
kj .

Set Dĵ = Dj and D~j = Dj .
end while

end while

Set fmin = min
j
(Fj).

Set imin = argmin
�
Fj�fmin+E

Dj

�
, where E = max

�
�jfminj; 10�8

�
.

end for
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3 The Test Problems

In this section we �rst give a complete description of the test problems used in the comparisons in
Section 4.1. We use the same problem names and abbreviations as in [9]. Table 2 gives a compact
description of the test problems including information about the abbreviation used, the problem
dimension and the number of local and global minima.

Table 2: Compact description of the test problems.

Problem Abbreviation Problem Number of Number of
dimension local minima global minima

Shekel 5 S5 4 5 1
Shekel 7 S7 4 7 1
Shekel 10 S10 4 10 1
Hartman 3 H3 3 4 1
Hartman 6 H6 6 4 1
Branin RCOS BR 2 3 3
Goldstein and Price GP 2 4 1
Six-Hump Camel C6 2 6 2
Two-Dimensional Schubert SHU 2 760 18

The problem de�nitions of problem S5, S7, S10, H3, H6 and GP are taken from [1], problem BR
from [8, page 468] and problem C6 and SHU from [11]. Information about the optimal function
values, denoted fglobal, were kindly supplied by D. R. Jones.

� Shekel 5, Shekel 7 and Shekel 10:

min
x

f(x) = �
mP
i=1

1
(x�ai)T (x�ai)+ci

s:t: 0 � xj � 10; j = 1; 2; :::; n ;

where n = 4, ai is the ith row in A and ci is the ith element in c. A and c is de�ned by

A =

0
BBBBBBBBBBBBBB@

4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7
2 9 2 9
5 5 3 3
8 1 8 1
6 2 6 2
7 3:6 7 3:6

1
CCCCCCCCCCCCCCA

; c =

0
BBBBBBBBBBBBBB@

0:1
0:2
0:2
0:4
0:4
0:6
0:3
0:7
0:5
0:5

1
CCCCCCCCCCCCCCA

:

Consider the three cases with m = 5; 7 and 10,

m = 5 : fglobal = �10:1531996790582;
m = 7 : fglobal = �10:4029405668187;
m = 10 : fglobal = �10:5364098166920:

� Hartman 3 and Hartman 6:

min
x

f(x) = �
mP
i=1

ci exp

 
�

mP
j=1

aij(xj � pij)
2

!

s:t: 0 � xj � 1; j = 1; 2; :::; n :
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For Hartman 3, n = 3 and A, c and P is given by

A =

0
BB@

3 10 30
0:1 10 35
3 10 30
0:1 10 35

1
CCA ; c =

0
BB@

1
1:2
3
3:2

1
CCA ; P =

0
BB@

0:3689 0:1170 0:2673
0:4699 0:4387 0:7470
0:1091 0:8732 0:5547
0:03815 0:5743 0:8828

1
CCA ;

and for Hartman 6, n = 6 and A, c and P is given by

A =

0
BB@

10 3 17 3:5 1:7 8
0:05 10 17 0:1 8 14
3 3:5 1:7 10 17 8
17 8 0:05 10 0:1 14

1
CCA ; c =

0
BB@

1
1:2
3
3:2

1
CCA ;

P =

0
BB@

0:1312 0:1696 0:5569 0:0124 0:8283 0:5886
0:2329 0:4135 0:8307 0:3736 0:1004 0:9991
0:2348 0:1451 0:3522 0:2883 0:3047 0:6650
0:4047 0:8828 0:8732 0:5743 0:1091 0:0381

1
CCA ;

n = 3 : fglobal = �3:86278214782076;
n = 6 : fglobal = �3:32236801141551:

� Branin RCOS:

min
x

f(x) =
�
x2 �

5x2
1

4�2 +
5x1
�

� 6
�2

+ 10
�
1� 1

8�

�
cos(x1) + 10

s:t:
�5 � x1 � 10
0 � x2 � 15;

fglobal = 0:397887357729739:

� Goldstein and Price:

min
x

f(x) =
h
1 + (x1 + x2 + 1)

2 �
19� 14x1 + 3x21 � 14x2 + 6x1x2 + 3x22

�i
�

h
30 + (2x1 � 3x2)

2 �
18� 32x1 + 12x21 + 48x2 � 36x1x2 + 27x22

�i
s:t: �2 � xj � 2; j = 1; 2 ;

fglobal = 3:

� Six-Hump Camel:

min
x

f(x) =
�
4� 2:1x21 +

1
3x

4
1

�
x21 + x1x2 +

�
�4 + 4x22

�
x22

s:t:
�3 � x1 � 3
�2 � x2 � 2;

fglobal = �1:0316284535:

� Two-Dimensional Schubert:

min
x

f(x) =

�
5P

i=1
i cos [(i+ 1)x1 + i]

�
�

�
5P

i=1
i cos [(i+ 1)x2 + i]

�
s:t: �10 � xj � 10; j = 1; 2 ;

fglobal = �186:730908831024:
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The problems S5, S7, S10, H3, H6 and GP from [1] has often been criticized for being easy test
problems. A more challenging test set was used in the �rst contest on evolutionary optimization
(ICEO) at the ICEO'96 conference. This test bed contains �ve problems, each in a 5-dimensional
and a 10-dimensional version. For these problems the value to reach freach is given instead of
fglobal. In Section 4.2 we will present the results obtained when applying glbSolve to the ICEO test
problems.

� Sphere model:

min
x

f(x) =
nP
i=1

(xi � 1)2

s:t: �5 � xi � 5; i = 1; 2; :::; n ;

freach = 10�6:

� Griewank's function:

min
x

f(x) =

nP

i=1

(xi�100)2

4000 �
nQ
i=1

cos(xi�100p
i

) + 1

s:t: �600 � xi � 600; i = 1; 2; :::; n ;

freach = 10�6:

� Shekel's foxholes:

min
x

f(x) = �
30P
i=1

1
(x�ai)T (x�ai)+ci

s:t: 0 � xj � 10; j = 1; 2; :::; n ;

where ai is the ith row in A and ci is the ith element in c. A and c is de�ned by

A
T

=

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

9:681 0:667 4:783 9:095 3:517 9:325 6:544 0:211 5:122 2:020

9:400 2:041 3:788 7:931 2:882 2:672 3:568 1:284 7:033 7:374

8:025 9:152 5:114 7:621 4:564 4:711 2:996 6:126 0:734 4:982

2:196 0:415 5:649 6:979 9:510 9:166 6:304 6:054 9:377 1:426

8:074 8:777 3:467 1:863 6:708 6:349 4:534 0:276 7:633 1:567

7:650 5:658 0:720 2:764 3:278 5:283 7:474 6:274 1:409 8:208

1:256 3:605 8:623 6:905 0:584 8:133 6:071 6:888 4:187 5:448

8:314 2:261 4:224 1:781 4:124 0:932 8:129 8:658 1:208 5:762

0:226 8:858 1:420 0:945 1:622 4:698 6:228 9:096 0:972 7:637

7:305 2:228 1:242 5:928 9:133 1:826 4:060 5:204 8:713 8:247

0:652 7:027 0:508 4:876 8:807 4:632 5:808 6:937 3:291 7:016

2:699 3:516 5:874 4:119 4:461 7:496 8:817 0:690 6:593 9:789

8:327 3:897 2:017 9:570 9:825 1:150 1:395 3:885 6:354 0:109

2:132 7:006 7:136 2:641 1:882 5:943 7:273 7:691 2:880 0:564

4:707 5:579 4:080 0:581 9:698 8:542 8:077 8:515 9:231 4:670

8:304 7:559 8:567 0:322 7:128 8:392 1:472 8:524 2:277 7:826

8:632 4:409 4:832 5:768 7:050 6:715 1:711 4:323 4:405 4:591

4:887 9:112 0:170 8:967 9:693 9:867 7:508 7:770 8:382 6:740

2:440 6:686 4:299 1:007 7:008 1:427 9:398 8:480 9:950 1:675

6:306 8:583 6:084 1:138 4:350 3:134 7:853 6:061 7:457 2:258

0:652 2:343 1:370 0:821 1:310 1:063 0:689 8:819 8:833 9:070

5:558 1:272 5:756 9:857 2:279 2:764 1:284 1:677 1:244 1:234

3:352 7:549 9:817 9:437 8:687 4:167 2:570 6:540 0:228 0:027

8:798 0:880 2:370 0:168 1:701 3:680 1:231 2:390 2:499 0:064

1:460 8:057 1:336 7:217 7:914 3:615 9:981 9:198 5:292 1:224

0:432 8:645 8:774 0:249 8:081 7:461 4:416 0:652 4:002 4:644

0:679 2:800 5:523 3:049 2:968 7:225 6:730 4:199 9:614 9:229

4:263 1:074 7:286 5:599 8:291 5:200 9:214 8:272 4:398 4:506

9:496 4:830 3:150 8:270 5:079 1:231 5:731 9:494 1:883 9:732

4:138 2:562 2:532 9:661 5:611 5:500 6:886 2:341 9:699 6:500

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

; c =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0:806

0:517

0:100

0:908

0:965

0:669

0:524

0:902

0:531

0:876

0:462

0:491

0:463

0:714

0:352

0:869

0:813

0:811

0:828

0:964

0:789

0:360

0:369

0:992

0:332

0:817

0:632

0:883

0:608

0:326

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

;

freach = �9:

� Michalewicz's function:

min
x

f(x) = �
nP
i=1

�
sin(xi) sin

20(
ix2i
�
)
�

s:t: 0 � xi � �; i = 1; 2; :::; n ;

n = 5 : freach = �4:687;
n = 10 : freach = �9:66;
else : freach = �0:966n:
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� Langerman's function:

min
x

f(x) = �
30P
i=1

�
ci exp

�
� (x�ai)T (x�ai)

�

�
cos
�
(x� ai)

T (x� ai)�
��

s:t: 0 � xj � 10; j = 1; 2; :::; n ;

where ai is the ith row in A and ci is the ith element in c. A and c are the same as in Shekels's
foxholes but with c3 = 1:5.

freach = �1:4:

4 Computational Results

In this section we present some numerical experience that have been obtained with the implemen-
tation of DIRECT in glbSolve.

To illustrate the search behavior we have, as in [9], chosen to present scatter plots for the Branin's
problem after 16 and 45 iterations with 231 and 1017 function evaluations respectively, see Figure 1
and 2. Branin's function have three global optimum and the sampled points clearly cluster around
them.

−5 0 5 10
0

5

10

15
Branin RCOS, 16 iterations

x
1

x 2

Figure 1: Scatter plot of Branin RCOS after 16 iterations and 231 function evaluations.

4.1 Comparison Results

In Table 3 we compare the e�ciency of glbSolve versus DIRECT. The e�ciency is measured as the
number of function evaluations needed for convergence. We use the same de�nition of convergence
as in [9], where convergence is de�ned in terms of percent error from the globally optimal function
value. Let fglobal denote the known optimal function value and let fmin denote the best function
value at some point in the search, then the percent error is de�ned by

E = 100
fmin � fglobal

jfglobalj
:
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Figure 2: Scatter plot of Branin RCOS after 45 iterations and 1017 function evaluations.

In all cases, the parameter � was set to 10�4, the value of � used in [9].

Table 3: Number of function evaluations, glbSolve vs. DIRECT.

Routine S5 S7 S10 H3 H6 BR GP C6 SHU Av. Tot.
glbSolve E < 1% 100 94 94 70 198 65 83 77 3193 442 3974
DIRECT E < 1% 103 97 97 83 213 63 101 113 2883 417 3753
glbSolve E < 0:01% 153 143 143 178 529 165 167 146 3274 544 4898
DIRECT E < 0:01% 155 145 145 199 571 195 191 285 2967 539 4853

As seen in table 3, glbSolve needs fewer function evaluations in 15 of the 18 runs. For the �rst six
problems, the di�erences are small but that is not the fact for problem C6 and SHU. It is di�cult
to give a clear explanation of those great di�erences, but for problem SHU with 760 local minima
and 18 global minima, we think that the numerical tolerances used in the implementations play an
important role. The average and total number of function evaluations are here a bit misleading
since the SHU problem a�ects those values strongly. It is important to mention that we have spent
no time and no e�ort adjusting or tuning the numerical tolerances.

4.2 Computational Results for the ICEO Test Problems

For the ICEO test problems, we can not provide comparison results as in the previous section so
we restrict to just present our results. In Table 4, the number of function evaluations needed to
reach the value freach is presented. Note that we also consider the case n = 2 for each problem.

5 Practical Applications

In our research on prediction methods in computational �nance, we study the prediction of various
kinds of quantities related to stock markets, like stock prices, stock volatility and ranking measures.
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Table 4: Number of function evaluations needed for glbSolve to reach freach. y indicates that the
value was not reached after 15000 evaluations.

Problem n = 2 n = 5 n = 10
Sphere model 281 7477 y
Griewank's function 6252 y y
Shekel's foxholes 45 770 y
Michalewicz's function y 13911 y
Langerman's function 27 y y

In one project we instead of the classical time series approach used the more realistic prediction
problem of building a multi-stock arti�cial trader (ASTA). The behavior of the trader is controlled
by a parameter vector which is tuned for best performance. Here, glbSolve is used to �nd the
optimal parameters for the noisy functions obtained, when running on a large database of Swedish
stock market data [3].

Figure 3: Performance of the trading function Stoch(30; 3; 3; 20; 80) based on the Stochastics indi-
cator.

The Stochastics Indicator is a classical technical trading rule. We have obtained very good results
in ASTA using this rule to select buy and sell rules in a multi-stock trading algorithm, see Figure
4 for a performance diagram that compares the trading results with the stock market index. We
tried to tune two of the parameters in this trading rule. In Figure 4 we see the points sampled
when trying to �nd the optimal buy and sell rules in the Stochastics Indicator. They cluster around
(40; 78), which seems to be the global optimum. In Figure 5 one-dimensional views of the Net pro�t
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(with reversed sign) versus the Buylevel and the Sellevel are shown. The optimum is more well-
determined and distinct in the Buylevel. The global optimum is in fact very close to the standard
values used in technical analysis. Further testing and analysis are needed to establish robustness
properties of the parameters found.
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Figure 4: Sampled points by glbSolve in the parameter space when optimizing the buy and sell
levels for the trading function Stoch(30; 3; 3; Sellevel; Buylevel).

6 Conclusions

We have presented details and some numerical results on the implementation of the DIRECT algo-
rithm in Matlab. The Matlab environment gives access to several utility functions, which made the
implementation rather straightforward. Further, having glbSolve as part of the TOMLAB toolbox
for nonlinear programming NLPLIB TBand also possible to run using the Graphical User Interface
(GUI) [2], it could be of use for many purposes.

The numerical results obtained are pleasant. In [9], DIRECT is shown to perform well compared to
other algorithms. We compare our implementation to DIRECT and the results are to our favor in
most of the cases. On the ICEO test problems, glbSolve showed some limitations, but these problems
are considered to be hard problems. glbSolve has been successfully used in practical applications.
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Figure 5: One-dimensional views of the global optimization of the parameters in the trading function
Stoch(30; 3; 3; Sellevel; Buylevel). The left graph shows the Net pro�t versus the Buylevel for an
equidistant grid of values of the Sellevel. The right graph shows the Net pro�t versus the Sellevel
for an equidistant grid of values of the Buylevel.
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Appendix A. An Example of the Use of gblSolve

Here we give an example of how to run the gblSolve solver, the stand-alone version of the TOMLAB
NLPLIB TB solver glbSolve. In Appendix B the full code of glbSolve is given. Assume you want to
solve the problem Branin RCOS de�ned in Section 3 using gblSolve.

1. Create a Matlab m-�le function for computing the objective function f .

function f = funct1(x);

f = (x(2)-5*x(1)^2/(4*pi^2)+5*x(1)/pi-6)^2+10*(1-1/(8*pi))*cos(x(1))+10;

2. De�ne the input arguments at the Matlab prompt:

fun = 'funct1';

x_L = [-5 0]';

x_U = [10 15]';

GLOBAL.iterations = 20;

PriLev = 2;

3. Now, you can call gblSolve:

Result = gblSolve(fun,x_L,x_U,GLOBAL,PriLev);

4. Assign the best function value found to fopt and the corresponding point(s) to xopt:

f_opt = Result.f_k

f_opt =

0.3979
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x_opt = Result.x_k

x_opt =

3.1417

2.2500

Note that the number of iterations and the printing level are not necessary to supply (they are by
default set to 50 and 1 respectively). Also note that gblSolve has no explicit stopping criteria and
therefore it runs a prede�ned number of iterations.

It is possible to restart gblSolve with the current status on the parameters from the previous run.
Assume you have run 20 iterations as in the example above, and then you want to restart and run
30 iterations more (this will give exactly the same result as running 50 iterations in the �rst run).
To use the restart option do:

...

...

Result = gblSolve(fun,x_L,x_U,GLOBAL,PriLev); % First run

GLOBAL = Result.GLOBAL;

GLOBAL.iterations = 30;

Result = gblSolve(fun,x_L,x_U,GLOBAL,PriLev); % Restart

If you want a scatter plot of all sampled points in the search space, do:

C = Result.GLOBAL.C;

plot(C(1,:),C(2,:),'.');

Appendix B. The Matlab Code for gblSolve

% This is a standalone version of glbSolve.m which is a part of the

% optimization environment TOMLAB, see http://www.ima.mdh.se/tom/

%

% gblSolve implements the algorithm DIRECT by D. R. Jones,

% C. D. Perttunen and B. E. Stuckman presented in the paper

% "Lipschitzian Optimization Without the Lipschitz Constant",

% JOTA Vol. 79, No. 1, October 1993.

% All page references and notations are taken from this paper.

%

% gblSolve solves problems of the form:

%

% min f(x)

% x

% s/t x_L <= x <= x_U

%

% Calling syntax:

%

% function Result = gblSolve(fun,x_L,x_U,GLOBAL,PriLev)

%

% INPUT PARAMETERS

%

% fun Name of m-file computing the function value, given as a string.
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% x_L Lower bounds for x

% x_U Upper bounds for x

%

% GLOBAL.iterations Number of iterations to run, default 50.

% GLOBAL.epsilon Global/local search weight parameter, default 1E-4.

%

% If restart is wanted, the following fields in GLOBAL should be defined

% and equal the corresponding fields in the Result structure from the

% previous run:

% GLOBAL.C Matrix with all rectangle centerpoints.

% GLOBAL.D Vector with distances from centerpoint to the vertices.

% GLOBAL.L Matrix with all rectangle side lengths in each dimension.

% GLOBAL.F Vector with function values.

% GLOBAL.d Row vector of all different distances, sorted.

% GLOBAL.d_min Row vector of minimum function value for each distance

%

% PriLev Printing level:

% PriLev >= 0 Warnings

% PriLev > 0 Small info

% PriLev > 1 Each iteration info

%

% OUTPUT PARAMETERS

%

% Result Structure with fields:

% x_k Matrix with all points fulfilling f(x)=min(f).

% f_k Smallest function value found.

% Iter Number of iterations

% FuncEv Number of function evaluations.

% GLOBAL.C Matrix with all rectangle centerpoints.

% GLOBAL.D Vector with distances from centerpoint to the vertices.

% GLOBAL.L Matrix with all rectangle side lengths in each dimension.

% GLOBAL.F Vector with function values.

% GLOBAL.d Row vector of all different distances, sorted.

% GLOBAL.d_min Row vector of minimum function value for each distance

%

% Mattias Bjorkman, Optimization Theory, Dep of Mathematics and Physics,

% Malardalen University, P.O. Box 883, SE-721 23 Vasteras, Sweden.

% E-mail: mattias.bjorkman@mdh.se

% Written Sep 1, 1998. Last modified May 4, 1999.

% K. Holmstrom modified Oct 13, 1998. K. Holmstrom Last modified Nov 28, 1998.

%

function Result = gblSolve(fun,x_L,x_U,GLOBAL,PriLev)

if nargin < 5;

PriLev = [];

if nargin < 4

GLOBAL = [];

if nargin < 3

x_U = [];

if nargin < 2

x_L = [];

if nargin < 1

fun = [];

end

end

end

end

end
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if isempty(PriLev), PriLev=1; end

if isempty(fun) | isempty(x_L) | isempty(x_U)

disp(' gblSolve requires at least three nonempty input arguments')

return;

end

if isempty(GLOBAL)

T = 50; % Number of iterations

epsilon = 1e-4; % global/local weight parameter.

tol = 0.01; % Error tolerance parameter.

else

if isfield(GLOBAL,'iterations') % Number of iterations

T = GLOBAL.iterations;

else

T = 50;

end

if isfield(GLOBAL,'epsilon') % global/local weight parameter

epsilon = GLOBAL.epsilon;

else

epsilon = 1E-4;

end

if isfield(GLOBAL,'tolerance') % Convergence tolerance

tol = GLOBAL.tolerance;

else

tol = 0.01;

end

end

nFunc=0;

convflag=0;

x_L = x_L(:);

x_U = x_U(:);

n = length(x_L); % Problem dimension

tolle = 1E-16;

tolle2 = 1E-12;

%

% STEP 1, Initialization

%

if isfield(GLOBAL,'C') & ~isempty(GLOBAL.C)

% Restart with values from previous run.

F = GLOBAL.F;

m = length(F);

if PriLev > 0

fprintf('\n Restarting with %d sampled points from previous run\n',m);

end

D = GLOBAL.D;

L = GLOBAL.L;

d = GLOBAL.d;

d_min = GLOBAL.d_min;

f_min = min(F);

E = max(epsilon*abs(f_min),1E-8);

[dummy i_min] = min( (F - f_min + E)./D );

% Must transform Prob.GLOBAL.C back to unit hypercube

for i = 1:m
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C(:,i) = ( GLOBAL.C(:,i) - x_L )./(x_U - x_L);

end

else

% No restart, set first point to center of the unit hypercube.

m = 1; % Current number of rectangles

C = ones(n,1)./2; % Matrix with all rectangle centerpoints

% All C_coordinates refers to the n-dimensional hypercube.

x_m = x_L + C.*(x_U - x_L); % Transform C to original search space

f_min = feval(fun, x_m); % Function value at x_m

f_0 = f_min;

nFunc=nFunc+1;

i_min = 1; % The rectangle which minimizes (F - f_min + E)./D where

% E = max(epsilon*abs(f_min),1E-8)

L = ones(n,1)./2; % Matrix with all rectangle side lengths in each dimension

D = sqrt(sum(L.^2)); % Vector with distances from centerpoint to the vertices

F = [f_min]; % Vector with function values

d = D; % Row vector of all different distances, sorted

d_min = f_min; % Row vector of minimum function value for each distance

end

% ITERATION LOOP

t = 1; % t is the iteration counter

while t <= T & ~convflag

%

% STEP 2 Identify the set S of all potentially optimal rectangles

%

S = []; % Set of all potentially optimal rectangles

S_1 = [];

idx = find(d==D(i_min));

%idx = find(abs( d-D(i_min) ) <= tolle );

if isempty(idx)

if PriLev >= 0

fprintf('\n WARNING: Numerical trouble when determining S_1\n');

end

return;

end

for i = idx : length(d)

idx2 = find( ( F==d_min(i) ) & ( D==d(i) ) );

%idx2 = find( (abs( F-d_min(i) ) <= tolle ) & ( abs( D-d(i) ) <= tolle ) );

S_1 = [S_1 idx2];

end

% S_1 now includes all rectangles i, with D(i) >= D(i_min)

% and F(i) is the minimum function value for the current distance.

% Pick out all rectangles in S_1 which lies below the line passing through

% the points: ( D(i_min), F(i_min) ) and the lower rightmost point.

S_2 = [];

if length(d)-idx > 1

a1 = D(i_min);

b1 = F(i_min);

a2 = d(length(d));

b2 = d_min(length(d));

% The line is defined by: y = slope*x + const

slope = (b2-b1)/(a2-a1);
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const = b1 - slope*a1;

for i = 1 : length(S_1)

j = S_1(i);

if F(j) <= slope*D(j) + const + tolle2

S_2 = [S_2 j];

end

end

% S_2 now contains all points in S_1 which lies on or below the line

% Find the points on the convex hull defined by the points in S_2

xx = D(S_2);

yy = F(S_2);

h = conhull(xx,yy); % conhull is an internal subfunction

S_3 = S_2(h);

else

S_3 = S_1;

end

S = S_3;

% STEP 3, 5 Select any rectangle j in S

for jj = 1:length(S) % For each potentially optimal rectangle

j = S(jj);

%

% STEP 4 Determine where to sample within rectangle j and how to

% divide the rectangle into subrectangles. Update f_min

% and set m=m+delta_m, where delta_m is the number of new

% points sampled.

% 4:1 Identify the set I of dimensions with the maximum side length.

% Let delta equal one-third of this maximum side length.

max_L = max(L(:,j));

I = find( L(:,j)==max_L );

% I = find( abs( L(:,j) - max_L ) < tolle);

delta = 2*max_L/3;

% 4:2 Sample the function at the points c +- delta*e_i for all

% i in I.

w=[];

for ii = 1:length(I) % for each dimension with maximum side length

i = I(ii);

e_i = [zeros(i-1,1);1;zeros(n-i,1)];

c_m1 = C(:,j) + delta*e_i; % Centerpoint for new rectangle

% Transform c_m1 to original search space

x_m1 = x_L + c_m1.*(x_U - x_L);

f_m1 = feval(fun, x_m1); % Function value at x_m1

nFunc=nFunc+1;

c_m2 = C(:,j) - delta*e_i; % Centerpoint for new rectangle

x_m2 = x_L + c_m2.*(x_U - x_L); % Transform c_m2 to original search space

f_m2 = feval(fun, x_m2); % Function value at x_m2

nFunc=nFunc+1;

w(ii) = min(f_m1,f_m2);

C = [C c_m1 c_m2]; % Matrix with all rectangle centerpoints

F = [F f_m1 f_m2]; % Vector with function values
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end

% 4:3 Divide the rectangle containing C(:,j) into thirds along the

% dimension in I, starting with the dimension with the lowest

% value of w(ii)

[a b] = sort(w);

for ii = 1:length(I)

i = I(b(ii));

ix1 = m + 2*b(ii)-1; % Index for new rectangle

ix2 = m + 2*b(ii); % Index for new rectangle

L(i,j) = delta/2;

L(:,ix1) = L(:,j);

L(:,ix2) = L(:,j);

D(j) = sqrt(sum(L(:,j).^2));

D(ix1) = D(j);

D(ix2) = D(j);

end

m = m + 2*length(I);

end

% UPDATE:

f_min = min(F);

E = max(epsilon*abs(f_min),1E-8);

[dummy i_min] = min( (F - f_min + E)./D );

d = D;

i = 1;

while 1

d_tmp = d(i);

idx = find(d~=d_tmp);

d = [d_tmp d(idx)];

if i==length(d)

break;

else

i = i + 1;

end

end

d = sort(d);

d_min = [];

for i = 1:length(d);

idx1 = find(D==d(i));

%idx1 = find( abs( D-d(i) ) <= tolle );

d_min(i) = min(F(idx1));

end

if PriLev > 1

fprintf('\n Iteration: %d f_min: %15.10f Sampled points: %d',...

t,f_min,nFunc);

end

t = t + 1;

end % ITERATION LOOP
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% SAVE RESULTS

Result.f_k = f_min; % Best function value

Result.Iter = T; % Number of iterations

CC = [];

for i = 1:m % Transform to original coordinates

CC = [CC x_L+C(:,i).*(x_U-x_L)];

end

Result.GLOBAL.C = CC; % All sampled points in original coordinates

Result.GLOBAL.F = F; % All function values computed

Result.GLOBAL.D = D; % All distances

Result.GLOBAL.L = L; % All lengths

Result.GLOBAL.d = d;

Result.GLOBAL.d_min = d_min;

% Find all points i with F(i)=f_min

idx = find(F==f_min);

Result.x_k = CC(:,idx); % All points i with F(i)=f_min

Result.FuncEv=nFunc;

function h = conhull(x,y);

% conhull returns all points on the convex hull, even redundant ones.

%

% conhull is based on the algorithm GRAHAMSHULL pages 108-109

% in "Computational Geometry" by Franco P. Preparata and

% Michael Ian Shamos.

%

% Input vector x must be sorted i.e. x(1) <= x(2) <= ... <= x(length(x)).

%

x = x(:);

y = y(:);

m = length(x);

if length(x) ~= length(y)

disp('Input dimension must agree, error in conhull-gblSolve');

return;

end

if m == 2

h = [1 2];

return;

end

if m == 1

h = [1];

return;

end

START = 1;

v = START;

w = length(x);

flag = 0;

h = [1:length(x)]'; % Index vector for points in convex hull

while ( next(v,m)~=START ) | ( flag==0 )

if next(v,m) == w

flag = 1;

end

a = v;

b = next(v,m);
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c = next(next(v,m),m);

if det([ x(a) y(a) 1 ; x(b) y(b) 1 ; x(c) y(c) 1 ]) >= 0

leftturn = 1;

else

leftturn = 0;

end

if leftturn

v = next(v,m);

else

j = next(v,m);

x = [x(1:j-1);x(j+1:m)];

y = [y(1:j-1);y(j+1:m)];

h = [h(1:j-1);h(j+1:m)];

m=m-1;

w=w-1;

v = pred(v,m);

end

end

function i = next(v,m);

if v==m

i = 1;

else

i = v + 1;

end

function i = pred(v,m);

if v==1

i = m;

else

i = v - 1;

end
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