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Penalty Methods

Problem

The general non-linear programming problem subject to inequality
constraints is defined by:

Minimize f (x)

such that: gi (x) ≥ 0, i = 1, . . . ,m, (1)

where f : R
n → R and gi : R

n → R.
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Penalty Methods

Strategy problem

The Penalty Methods replace the resolution of the original problem by
the solution of unconstrained problems

minimize f (x) +
m

∑

i=1

P̄(gi (x)) (2)

Penalty Methods

Parametrics:

Outside Penalty;

Inside Penalty;

Non-parametrics;

Exact;

Lagrangean.
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Penalty Methods

Hyperbolic penalty

The hyperbolic penalty method adopts the penalty function

P(y , α, τ) = −(
1

2
tanα)y +

√

(
1

2
tanα)2y2 + τ 2 (3)

where α ∈ [0, π/2) and τ ≥ 0.

The hyperbolic penalty function may be put in the more convenient form:

P(y , λ, τ) = −λy +
√

λ2y2 + τ 2 (4)

where λ = 1
2
tanα.
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Penalty Methods

Hyperbolic Penalty Function
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Penalty Methods

Exterior Penalty
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Penalty Methods

Interior Penalty
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Penalty Methods

Difficulties
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Penalty Methods

Pipeline
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Penalty Methods

Hyperbolic Penalty of the Constraint a ≤ x
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Penalty Methods

Hyperbolic Penalty of the Constraint x ≤ b
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Penalty Methods

Pipeline Effect (a ≤ x ≤ b)
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Penalty Methods

Sequence of Pipelines
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Properties of the hyperbolic function

P0: P(y , λ, τ) is k-times continuously differentiable for any positive
integer k for τ > 0
P1: P(y , λ, τ) is asymptotically tangent to the straight lines
r1(y) = −2λy and r2(y) = 0 for τ > 0.
P2: P(y , λ, 0) = 0 for y ≥ 0

P(y , λ, 0) = −2λy for y < 0
P3: P(y , λ, τ) ≥ −2λy for all y ∈ ℜ, λ ≥ 0 , τ ≥ 0
P4: P(0, λ, τ) = τ for τ ≥ 0 and λ ≥ 0
P5: P(y , λ, τ):







is a convex decreasing function of y for τ > 0 and λ ≥ 0
is a convex non-increasing function of y for τ = 0 and λ ≥ 0
is a convex function equal to τ for λ = 0
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Properties of the hyperbolic function

P6: For λk+1 > λk and τ > 0 :







P(y , λk+1, τ) < P(y , λk , τ) for y > 0
P(y , λk+1, τ) = P(y , λk , τ) = τ for y = 0
P(y , λk+1, τ) > P(y , λk , τ) for y < 0

P7: P(y , λ, τ k+1) < P(y , λ, τ k) for all y ∈ ℜ , λ > 0, 0 ≤ τ k+1 < τ k .

P8: maxy (P(y , λ, τ 0) − P(y , λ, τ 1)) = τ 0 − τ 1

and it occurs in y = 0 for λ > 0 and 0 ≤ τ 1 < τ 0 .

The derivative of the hyperbolic penalty function with respect to y

assumes the form:

P ′
y (y , λ, τ) = λ[−1 + λy/

√

λ2y2 + τ 2] (5)

and it has the following properties:
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Properties of the hyperbolic function

P9: P ′
y (y , λ, τ) varies in the range (−2λ, 0) .

P10: P ′
y (0, λ, τ) = −λ for τ > 0.

P11: When the parameter λ increases the derivative of the penalty
function P ′

y (y , λ, τ) decreases for the points y < ȳ and increases for the

points y > ȳ where ȳ = βτ/λ with β =
√

(−1 +
√

5)/2 .
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The solution of the original problem is obtained by means of solving a
sequence of subproblems, k = 1, 2, ..., defined by minimization of the
modified objective function

F (x , λk , τ k) = f (x) +
m

∑

i=1

P(gi (x), λk , τ k). (6)
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Hyperbolic penalty algorithm (simplified)

1) Let k = 0. Take initial values x0, λ1 > 0 and τ 1 > 0.
2) Let k := k + 1. Solve the unconstrained minimization problem:

minimizexF (x , λk , τ k)

from the initial point xk−1 obtaining an intermediate optimal point xk .
3) Feasibility Test:

If xk is an infeasible point then execute step 4
else execute step 5

4) Increase on parameter λ :

λk+1
i = rλk

i , r > 1

Go to step 2
5) Decrease on parameter τ :

τ k+1
i = qτ k

i , 0 < q < 1

Go to step 2
Adilson Elias Xavier
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Illustration of hyperbolic penalty algorithm

Figure 3: Hyperbolic Penalty Algorithm
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In order to prove the convergence of the hyperbolic penalty algorithm,
firstly we will describe which are the required assumptions for this
problem.
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Conditions

C1 - The feasible set S = {x |gi (x) ≥ 0, i = 1, ...,m} has a
non-empty interior.

C2 - (Differentiability). The functions f (x) and gi (x), i = 1, ...,m
have continuous first derivatives.

C3 - There exists a pair (λ0, τ 0) such that
infx∈ℜnF (x , λ0, τ 0) = F 0 > −∞.

C4 - There exists a ǫ > 0 such that the set
Sǫ = {x |gi (x) ≥ −ǫ, i = 1, ...,m} is bounded.

C5 - (Condition of Regularity) The gradients of the constraints at
the boundary of feasible region ∇gi (x), i ∈ I0(x) = {i |gi (x) = 0} are
linearly independent.

C6 - The gradients of the functions f (x) and gi (x), i = 1, ...,m are
bounded in the set Sǫ:
||∇f (x)|| < L

||∇gi (x)|| < L, i = 1, ...,m.
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Conditions

Di Pillo and Grippo (1986), Proposition 1, show that conditions C2, C4
and C5 imply the regularity condition:
C7 - There exists a δ , 0 < δ ≤ ǫ , such that for any x ∈ Sδ , where
Sδ = {x | gi (x) ≥ −δ, i = 1, ..., m} , the gradients of the constraints
∇gi (x), i ∈ Iδ(x) = {i | − δ ≤ gi (x) ≤ +δ} are linearly independent.

Minimum Existence

Lemma 1

If C1, C2, C3 and C4 hold, then there exists λ ≥ λ0 such that
infx∈ℜnF (x , λ, τ) = minx∈ℜnF (x , λ, τ)
for all λ ≥ λ and for all 0 ≤ τ ≤ τ 0.
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Feasible minimum existence

Theorem 1. If the conditions C1 to C6 are satisfied then a value λ will
exist such that for all λ ≥ λ and for all 0 ≤ τ ≤ τ 0 a minimum point
x(λ, τ) of the modified objective function F (x , λ, τ) is a feasible point.

Conditional convergence

Theorem 2. If the conditions C1 to C6 are met, if limk→∞ τ k = 0 and if
xk ∈ argminxF (x , λk , τ k) is always feasible for λk = λ (constant) then it
will exist a convergent subsequence {xk} → x̆ and the limit of any of
these subsequences is a optimum point.
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Convergence of the algorithm

Theorem 3. If the conditions C1 to C6 are met then the Hyperbolic
Penalty Algorithm converges to a solution of the problem (7).
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Computacional Results

Problem n m First Phase Second Phase
NI NE CPU NI NE CPU

HS95 6 16 4 145 0.06 10 270 0.12
HS101 7 20 7 205 0.17 7 104 0.11
HS116 13 41 6 497 0.21 9 697 0.33
HS117 15 20 3 171 0.09 10 496 0.24
HS118 15 59 1 42 0.05 9 393 0.33
Hi23 100 112 1 207 2.74 9 1995 25.64
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Dual Conections of the Hyperbolic Penalty

Primal Problem

The general non-linear programming problem subject to inequality
constraints is defined by:

Minimize f (x)

such that: gi (x) ≥ 0, i = 1, . . . ,m,

where f : R
n → R and gi : R

n → R.
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Dual Conections of the Hyperbolic Penalty

KKT Necessary Conditions

x∗ : a regular minimum point ⇒ ∃ λ∗

∇f (x∗) −
m

∑

i=1

λ∗
i ∇gi (x

∗) = 0

λ∗
i ≥ 0, i = 1, · · · ,m

λ∗
i gi (x

∗) = 0, i = 1, · · · ,m.
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Dual Conections of the Hyperbolic Penalty

Penalized Objective Function

Minimize f (x) +

m
∑

i=1

P(gi (x), λi , τi )

P(gi (x), λi , τi ) = −λigi (x) +
√

λ2
i g

2
i (x) + τ 2

i .

x̄ : minimum point of the penalized objective function

∇f (x̄) −
m

∑

i=1

λi∇gi (x̄) +

m
∑

i=1

(λ2
i gi (x̄))

(λ2
i g

2
i (x̄) + τ 2

i )1/2
∇gi (x̄) = 0.

Adilson Elias Xavier



Hyperbolic Penalty
Hyperbolic Penalty Algorithm

Convergence Analysis
Computacional Results

Dual Conections of the Hyperbolic Penalty
Conclusions
References

Dual Conections of the Hyperbolic Penalty

Lagrange Multiplies Estimates: λ̂i , i = 1, · · · ,m

∇f (x̄) −
m

∑

i=1

λi

[

1 − λigi (x̄)
√

λ2
i g

2
i (x̄) + τ 2

i

]

∇gi (x̄) = 0

λ̂i = λi

[

1 − λigi (x̄)
√

λ2
i g

2
i (x̄) + τ 2

i

]

.

KKT Properties of λ̂i

∇f (x̄) −
m

∑

i=1

λ̂i∇gi (x̄) = 0 OK! λ̂i ≥ 0 OK!

But, the conditions: λ̂igi (x̄) = 0, i = 1, · · · ,m, are not satisfied!
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Exact Penalty

Simplified Hypothesis

The original problem is strictly convex;

x∗ is a regular minimum point.

If λi = λ∗
i then x∗ is the minimum point of the penalized objective

function for any values of parameters τi , i = 1, · · · ,m.

∇f (x̄) −
m

∑

i=1

λ∗
i

[

1 − λ∗
i gi (x̄)

√

(λ∗
i gi (x̄))2 + τ 2

i

]

∇gi (x̄) = 0.

By taking x̄ = x∗, this equation is satisfied.
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Hyperbolic Lagrangean

maximizeλ≥0 φ(λ)

φ(λ) = minimumx

[

f (x) +
m

∑

i=1

P(gi (x), λi , τi )

]

where

P(gi (x), λi , τi ) = −λigi (x) +
√

(λigi (x))2 + τ 2
i .

Adequate hypothesis: REGULARITY and CONVEXITY!
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Conclusions

Point x ∈ ℜn can be used as the initial point x0;

The hyperbolic function has the distinctive property of being
continuously differentiable;

F (x , λ, τ) will be class C∞ if the involved functions f (x) and
gi (x), i = 1, ...,m, are too;

The smooth behavior offers the possibility of using the best
unconstrained minimization techniques, which use second-order
derivatives.
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