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What Is the Optimization Toolbox?
The Optimization Toolbox is a collection of functions that extend the capability
of the MATLAB® numeric computing environment. The toolbox includes
routines for many types of optimization including:

• Unconstrained nonlinear minimization

• Constrained nonlinear minimization, including goal attainment problems,
minimax problems, and semi-infinite minimization problems

• Quadratic and linear programming

• Nonlinear least squares and curve-fitting

• Nonlinear system of equation solving

• Constrained linear least squares

Specialized algorithms for large-scale (sparse) problems are also available (see
“Large-Scale Algorithms” in the next section “New Features in Version 2”).

All of the toolbox functions are MATLAB M-files, made up of MATLAB
statements that implement specialized optimization algorithms. You can view
the MATLAB code for these functions using the statement:

type function_name

You can extend the capabilities of the Optimization Toolbox by writing your
own M-files, or by using the toolbox in combination with other toolboxes, or
with MATLAB, or Simulink®.



New Features in Version 2
New Features in Version 2
Version 2 of the Optimization Toolbox offers a number of advances over
previous versions.

Large-Scale Algorithms
The focus of this version is new algorithms for solving large-scale problems,
including

• Linear programming

• Nonlinear least squares with bound constraints

• Nonlinear system of equation solving

• Unconstrained nonlinear minimization

• Nonlinear minimization with bound constraints

• Nonlinear minimization with linear equalities

• Quadratic problems with bound constraints

• Quadratic problems with linear equalities

• Linear least squares with bound constraints

The new large-scale algorithms have been incorporated into the toolbox
functions. The new functionality improves the ability of the toolbox to solve
large sparse problems.

Function Names and Calling Syntax
To accommodate this new functionality, many of the function names and
calling sequences have changed. Some of the improvements include

• Command line syntax has changed:

- Equality constraints and inequality constraints are now supplied as
separate input arguments.

- Linear constraints are supplied as separate arguments from the nonlinear
constraint function.

- The gradient of the objective is computed in the same function as the
objective, rather than in a separate function, in order to provide more
efficient computation (because the gradient and objective often share
ix
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similar computations). Similarly, the gradient of the nonlinear constraints
is computed by the (now separate) nonlinear constraint function.

- The Hessian matrix can be provided by the objective function when using
the large-scale algorithms.

• Optimization parameters are now contained in a structure, with functions to
create, change, and retrieve values.

• Each function returns an exit flag that denotes the termination state.

For more information on how to convert your old syntax to the new function
calling sequences, see “Converting Your Code to Version 2.0 Syntax” in
Chapter 1.



How to Use this Manual
How to Use this Manual
This manual has three main parts:

• Chapter 1 provides a tutorial for solving different optimization problems,
including a special section that highlights large-scale problems. This chapter
also provides information on how to use the toolbox functions in conjunction
with Simulink using multiobjective optimization. Other sections include
information about changing default parameters and using inline objects.

• Chapters 2 and 3 describe the algorithms in the optimization functions.
Chapter 2 describes the problem formulations and the algorithms for the
medium-scale algorithms. Chapter 3 focuses on the large-scale algorithms.

• Chapter 4 provides a detailed reference description of each toolbox function.
Reference descriptions include the function’s syntax, a description of the
different calling sequences available, and detailed information about
arguments to the function, including relevant optimization options
parameters. Reference descriptions may also include examples, a summary
of the function’s algorithms, and references to additional reading material.
xi
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xii
Installing the Toolbox
To determine if the Optimization Toolbox is installed on your system, type this
command at the MATLAB prompt:

ver

When you enter this command, MATLAB displays information about the
version of MATLAB you are running, including a list of all toolboxes installed
on your system and their version numbers.

If the Optimization Toolbox is not installed, check the Installation Guide for
instructions on how to install it.



Typographical Conventions
Typographical Conventions

Matrix, Vector, and Scalar Notation
Upper-case letters such as are used to denote matrices. Lower-case letters
such as are used to denote vectors, except where noted that it is a scalar. For
functions, the notation differs slightly to follow the usual conventions in
optimization. For vector functions, we use an upper-case letter such as in

. A function that returns a scalar value is denoted with a lower-case letter
such as in .

To Indicate This Guide Uses Example

Example code Monospace type To assign the value 5 to A,
enter:

A = 5

MATLAB
output

Monospace type MATLAB responds with

A =

    5

Function
names

Monospace type The cos function finds the
cosine of each array
element.

Function
syntax

Monospace type for text
that must appear as
shown.

The fminbnd function
uses the syntax

x= fminbnd('sin',3,4)

Mathematical
expressions

Variables in italics.
Functions, operators, and
constants in standard
type.

This vector represents the
polynomial

p = x2 + 2x + 3

New terms Italics An array is an ordered
collection of information.

A
x

F
F x( )

f f x( )
xiii
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Introduction
Optimization concerns the minimization or maximization of functions. The
Optimization Toolbox consists of functions that perform minimization (or
maximization) on general nonlinear functions. Functions for nonlinear
equation solving and least-squares (data-fitting) problems are also provided.

The tables below show the functions available for minimization, equation
solving, and solving least squares or data fitting problems.

Table 1-1:  Minimization

Type Notation Function

Scalar Minimization such that fminbnd

Unconstrained
Minimization

fminunc, 
fminsearch

Linear Programming linprog

Quadratic Programming quadprog

Constrained
Minimization

fmincon

Goal Attainment fgoalattain

f a( )
a

min a1 a a2< <

f x( )
x

min

fTx
x

min such that

A x⋅ b Aeq x⋅ beq l x u≤ ≤,=,≤

1
2---xTHx fTx+

x
min such that

A x⋅ b Aeq x⋅ beq l x u≤ ≤,=,≤

f x( )
x

min such that c x( ) 0≤ ceq x( ), 0=

A x⋅ b Aeq x⋅ beq l x u≤ ≤,=,≤

γ
x γ,
min such that F x( ) wγ– goal≤

c x( ) 0≤ ceq x( ), 0,=

A x⋅ b Aeq x⋅ beq l x u≤ ≤,=,≤
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Minimax fminimax

Semi-infinite
Minimization

fseminf

Table 1-1:  Minimization (Continued)

Type Notation Function

Fi x( ){ } such that
Fi{ }

max
x

min

c x( ) 0≤ ceq x( ), 0,=

A x⋅ b Aeq x⋅ beq l x u≤ ≤,=,≤

f x( ) such that
x

min K x w,( ) 0≤ for all w,

c x( ) 0≤ ceq x( ), 0,=

A x⋅ b Aeq x⋅ beq l x u≤ ≤,=,≤

Table 1-2:  Equation Solving

Type Notation Function

Linear Equations , n equations, n variables \ (slash)

Nonlinear Equation of One
Variable

fzero

Nonlinear Equations , n equations, n variables fsolve

C x⋅ d=

f a( ) 0=

F x( ) 0=

Table 1-3:  Least-Squares (Curve Fitting)

Type Notation Function

Linear Least Squares , m equations, n variables \ (slash)

Nonnegative Linear Least
Squares

such that lsqnonneg

C x⋅ d–
2

x
min 2

C x⋅ d–
2

x
min 2 x 0≥
1-3
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1-4
Overview
Most of these optimization routines require the definition of an M-file
containing the function to be minimized. Alternatively, an inline object created
from a MATLAB expression can be used. Maximization is achieved by
supplying the routines with –f, where f is the function being optimized.

Optimization options passed to the routines change optimization parameters.
Default optimization parameters are used extensively but can be changed
through an options structure.

Gradients are calculated using an adaptive finite-difference method unless
they are supplied in a function. Parameters can be passed directly to functions,
avoiding the need for global variables.

This User’s Guide separates “medium-scale” algorithms from “large-scale”
algorithms. Medium-scale is not a standard term and is used here only to
differentiate these algorithms from the large-scale algorithms, which are
designed to handle large-scale problems efficiently.

Medium-Scale Algorithms
The Optimization Toolbox routines offer a choice of algorithms and line search
strategies. The principal algorithms for unconstrained minimization are the
Nelder-Mead simplex search method and the BFGS quasi-Newton method. For
constrained minimization, minimax, goal attainment, and semi-infinite
optimization, variations of Sequential Quadratic Programming are used.

Constrained Linear Least
Squares

such that lsqlin

Nonlinear Least Squares

such that

lsqnonlin

Nonlinear Curve Fitting

such that

lsqcurvefit

Table 1-3:  Least-Squares (Curve Fitting) (Continued)

Type Notation Function

C x⋅ d–
2

x
min 2
A x⋅ b Aeq x⋅ beq l x u≤ ≤,=,≤

1
2--- F x( ) 2

2

x
min

1
2--- Fi x( )

2

i
∑=

l x u≤ ≤

1
2--- F x xdata,( ) ydata– 2

2

x
min

l x u≤ ≤
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Nonlinear least squares problems use the Gauss-Newton and
Levenberg-Marquardt methods.

A choice of line search strategy is given for unconstrained minimization and
nonlinear least squares problems. The line search strategies use safeguarded
cubic and quadratic interpolation and extrapolation methods.

Large-Scale Algorithms
All the large-scale algorithms, except linear programming, are trust-region
methods. Bound constrained problems are solved using reflective Newton
methods. Equality constrained problems are solved using a projective
preconditioned conjugate gradient iteration. You can use sparse iterative
solvers or sparse direct solvers in solving the linear systems to determine the
current step. Some choice of preconditioning in the iterative solvers is also
available.

The linear programming method is a variant of Mehrotra’s predictor-corrector
algorithm, a primal-dual interior-point method.
1-5
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Medium-Scale Examples
The Optimization Toolbox presents medium-scale algorithms through a
tutorial. The first part of this tutorial (through the “Equality Constrained
Example”) follows the first demonstration Tutorial Walk Through in the M-file
optdemo. The examples in the manual differ in that M-file functions were
written for the objective functions, whereas in the online demonstration, inline
objects were used for some functions.

The tutorial discusses the functions fminunc and fmincon in detail. The other
optimization routines fgoalattain, fminimax, lsqnonlin, fsolve, and
fseminf are used in a nearly identical manner, with differences only in the
problem formulation and the termination criteria. The next section discusses
multiobjective optimization and gives several examples using lsqnonlin,
fminimax, and fgoalattain including how Simulink can be used in conjunction
with the toolbox.

Unconstrained Example
Consider the problem of finding a set of values [x1, x2] that solves

(1-1)

To solve this two-dimensional problem, write an M-file that returns the
function value. Then, invoke the unconstrained minimization routine fminunc.

Step 1: Write an M-file objfun.m
function f = objfun(x)
f = exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1);

Step 2: Invoke one of the unconstrained optimization routines
x0 = [–1,1];    % Starting guess
options = optimset('LargeScale','off');
[x,fval,exitflag,output] = fminunc('objfun',x0,options);

After 40 function evaluations, this produces the solution:

x =
0.5000   –1.0000

f x( )
x

minimize e
x1 4x1

2 2x2
2 4x1x2 2x2 1+ + + +( )=
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The function at the solution x is returned in fval:

fval =
1.3030e–10

The exitflag tells if the algorithm converged. An exitflag > 0 means a local
minimum was found:

exitflag =
     1

The output structure gives more details about the optimization. For fminunc,
it includes the number of iterations in iterations, the number of function
evaluations in funcCount, the final step-size in stepsize, a measure of
first-order optimality (which in this unconstrained case is the infinity norm of
the gradient at the solution) in firstorderopt, and the type of algorithm used
in algorithm:

output = 
       iterations: 7
        funcCount: 40
         stepsize: 1
    firstorderopt: 9.2801e-004
        algorithm: 'medium-scale: Quasi-Newton line search'

When there exists more than one local minimum, the initial guess for the
vector [x1, x2] affects both the number of function evaluations and the value of
the solution point. In the example above, x0 is initialized to [–1,1].

The variable options can be passed to fminunc to change characteristics of the
optimization algorithm, as in

x = fminunc('objfun',x0,options);

options is a structure that contains values for termination tolerances and
algorithm choices. An options structure can be created using the optimset
function

options = optimset('LargeScale','off');

In this example we have turned off the default selection of the large-scale
algorithm and so the medium-scale algorithm is used. Other options include
controlling the amount of command line display during the optimization
iteration, the tolerances for the termination criteria, if a user-supplied gradient
1-7
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or Jacobian is to be used, and the maximum number of iterations or function
evaluations. See the References chapter pages for optimset and the individual
optimization functions, and Table 4-3 for more options and information.

Nonlinear Inequality Constrained Example
If inequality constraints are added to Eq. 1-1, the resulting problem may be
solved by the fmincon function. For example, find x that solves

(1-2)

Since neither of the constraints is linear, you cannot pass the constraints to
fmincon at the command line; instead you can create a second M-file confun.m
that returns the value at both constraints at the current x in a vector c. The
constrained optimizer, fmincon, is then invoked. Because fmincon expects the
constraints to be written in the form , you must rewrite your
constraints in the form

(1-3)

Step 1: Write an M-file confun.m for the constraints
function [c, ceq] = confun(x)
% nonlinear inequality constraints
c = [1.5 + x(1)*x(2) – x(1) – x(2);

 –x(1)*x(2) – 10];
% nonlinear equality constraints
ceq = [];

f x( )
x

minimize e
x1 4x1

2 2x2
2 4x1x2 2x2 1+ + + +( )=

subject to the constraints: x1x2 x1– x2 1.5–≤–

x1x2 10–≥

c x( ) 0≤

x1x2 x1– x2 1.5+ 0≤–

x1x2 10–– 0≤
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Step 2: Invoke constrained optimization routine:
x0 = [–1,1];   % Make a starting guess at the solution
options = optimset('LargeScale','off');
[x, fval] = ... 
fmincon('objfun',x0,[],[],[],[],[],[],'confun',options) 

After 38 function calls, the solution x produced with function value fval is

x = 
–9.5474  1.0474 

fval =
    0.0236

We can evaluate the constraints at the solution

[c,ceq] = confun(x)
c=

1.0e–15 *
–0.8882
0

ceq =
     []

Note that both constraint values are less than or equal to zero, that is, x
satisfies .

Constrained Example with Bounds
The variables in x can be restricted to certain limits by specifying simple bound
constraints to the constrained optimizer function. For fmincon, the command

x = fmincon('objfun',x0,[],[],[],[],lb,ub,'confun',options);

limits x to be within the range lb <= x <= ub.

c x( ) 0≤
1-9
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To restrict x in Eq. 1-2 to be greater than zero (i.e., ), use the
commands:

x0 = [–1,1]; % Make a starting guess at the solution
lb = [0,0];  % Set lower bounds
ub = [ ];  % No upper bounds
options = optimset('LargeScale','off');
[x,fval = ... 

fmincon('objfun',x0,[],[],[],[],lb,ub,'confun',options)
[c, ceq] = confun(x)

Note that to pass in the lower bounds as the seventh argument to fmincon, you
must specify values for the third through sixth arguments. In this example, we
specified [] for these arguments since we have no linear inequalities or linear
equalities.

After 13 function evaluations, the solution produced is

x = 
       0   1.5000
fval =
       8.5000
c =
     0

–10
ceq =
     []

When lb or ub contains fewer elements than x, only the first corresponding
elements in x are bounded. Alternatively, if only some of the variables are
bounded, then use –inf in lb for unbounded below variables and inf in ub for
unbounded above variables. For example,

lb = [–inf 0];
ub = [10 inf];

bounds ( has no lower bound and has no upper bound).
Using inf and –inf give better numerical results than using a very large
positive number or a very large negative number to imply lack of bounds.

Note that the number of function evaluations to find the solution is reduced
since we further restricted the search space. Fewer function evaluations are
usually taken when a problem has more constraints and bound limitations

x1 0 , x2 0≥≥

x1 10 , 0 x2≤≤ x1 x2
0
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because the optimization makes better decisions regarding step-size and
regions of feasibility than in the unconstrained case. It is, therefore, good
practice to bound and constrain problems, where possible, to promote fast
convergence to a solution.

Constrained Example with Gradients
Ordinarily the medium-scale minimization routines use numerical gradients
calculated by finite-difference approximation. This procedure systematically
perturbs each of the variables in order to calculate function and constraint
partial derivatives. Alternatively, you can provide a function to compute
partial derivatives analytically. Typically, the problem is solved more
accurately and efficiently if such a function is provided.

To solve the Eq. 1-2 using analytically determined gradients, do the following:

Step 1: Write an M-file for the objective function and gradient
function [f,G] = objfungrad(x)
f = exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1);
% Gradient of the objective function
t = exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1);
G = [ t + exp(x(1)) * (8*x(1) + 4*x(2)), 

exp(x(1))*(4*x(1)+4*x(2)+2)];

Step 2: Write an M-file for the nonlinear constraints and the gradients of 
the nonlinear constraints
function [c,ceq,DC,DCeq] = confungrad(x)
c(1) = 1.5 + x(1) * x(2) – x(1) – x(2); %inequality constraints
c(2) = –x(1) * x(2)–10; 
% Gradient of the constraints
DC= [x(2)–1, –x(2);
 x(1)–1, –x(1)];
% No nonlinear equality constraints
ceq=[];
DCeq = [ ];

G contains the partial derivatives of the objective function, f, returned by
objfungrad(x), with respect to each of the elements in x:
1-11
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(1-4)

The columns of DC contain the partial derivatives for each respective constraint
(i.e., the ith column of DC is the partial derivative of the ith constraint with
respect to x). So in the above example, DC is

(1-5)

Since you are providing the gradient of the objective n objfungrad.m and the
gradient of the constraints in confungrad.m, you must tell fmincon that these
M-files contain this additional information. Use optimset to turn the
parameters GradObj and GradConstr to 'on' in our already existing options
structure

options = optimset(options,'GradObj','on','GradConstr','on');

If you do not set these parameters to 'on' in the options structure, fminconwill
not use the analytic gradients.

The arguments lb and ub place lower and upper bounds on the independent
variables in x. In this example we have no bound constraints and so they are
both set to [].

f∂
x∂-----

e
x1 4x1

2 2x2
2 4x1x2 2x2 1+ + + +( ) e

x1 8x1 4x2+( )+

e
x1 4x1 4x2 2+ +( )

=

c1∂
x1∂--------

c2∂
x1∂--------

c1∂
x2∂--------

c2∂
x2∂--------

x2 1– x2–

x1 1– x1–

=

2
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Step 3: Invoke constrained optimization routine
x0 = [–1,1]; % Starting guess 
options = optimset('LargeScale','off');
options = optimset(options,'GradObj','on','GradConstr','on');
lb = [ ]; ub = [ ]; % No upper or lower bounds
[x,fval] = fmincon('objfungrad',x0,[],[],[],[],lb,ub,... 

'confungrad',options)
[c,ceq] = confungrad(x) % Check the constraint values at x

After 20 function evaluations, the solution produced is

x =
–9.5474    1.0474

fval =
0.0236

c =
1.0e–14 *
0.1110
–0.1776

ceq =
     []

Gradient Check: Analytic Versus Numeric
When analytically determined gradients are provided, you can compare the
supplied gradients with a set calculated by finite-difference evaluation. This is
particularly useful for detecting mistakes in either the objective function or the
gradient function formulation.

If such gradient checks are desired, set the DerivativeCheck parameter to
'on' using optimset:

options = optimset(options,'DerivativeCheck','on');

The first cycle of the optimization checks the analytically determined gradients
(of the objective function and, if they exist, the nonlinear constraints). If they
do not match the finite-differencing gradients within a given tolerance, a
warning message indicates the discrepancy and gives the option to abort the
optimization or to continue.
1-13
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Equality Constrained Example
For routines that permit equality constraints, nonlinear equality constraints
must be computed in the M-file with the nonlinear inequality constraints. For
linear equalities, the coefficients of the equalities are passed in through the
matrix Aeq and the right-hand-side vector beq.

For example, if you have the nonlinear equality constraint and the
nonlinear inequality constraint , rewrite them as

and then, to solve the problem:

Step 1: Write an M-file objfun.m
function f = objfun(x)
f = exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1);

Step 2: Write an M-file confuneq.m for the nonlinear constraints
function [c, ceq] = confuneq(x)
% nonlinear inequality constraints
c = –x(1)*x(2) – 10;
% nonlinear equality constraints
ceq = x(1)^2 + x(2) – 1;

Step 3: Invoke constrained optimization routine
x0 = [–1,1]; % Make a starting guess at the solution
options = optimset('LargeScale','off');
[x,fval] = fmincon('objfun',x0,[],[],[],[],[],[],... 

'confuneq',options)
[c,ceq] = confuneq(x) % Check the constraint values at x

x1
2 x2+ 1=

x1x2 10–≥

x1
2 x2 1–+ 0=

x1x2– 10– 0≤
4
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After 21 function evaluations, the solution produced is

x =
 —0.7529    0.4332

fval =
1.5093

c =
–9.6739

ceq =
4.0684e—010

Note that ceq is equal to 0 within the default tolerance on the constraints of
1.0e—006 and that c is less than or equal to zero as desired.

Maximization
The optimization functions fminbnd, fminsearch, fminunc, fmincon,
fgoalattain, fminimax, lsqcurvefit, and lsqnonlin all perform
minimization of the objective function, . Maximization is achieved by
supplying the routines with . Similarly, to achieve maximization for
quadprog supply –H and –f, and for linprog supply –f.

Greater than Zero Constraints
The Optimization Toolbox assumes nonlinear inequality constraints are of the
form . Greater than zero constraints are expressed as less than zero
constraints by multiplying them by –1. For example, a constraint of the form

is equivalent to the constraint ; a constraint of the form
is equivalent to the constraint .

Additional Arguments: Avoiding Global Variables
Parameters that would otherwise have to be declared as global can be passed
directly to M-file functions using additional arguments at the end of the calling
sequence.

For example, entering a number of variables at the end of the call to fsolve:

[x,fval] = fsolve('objfun',x0,options,P1,P2,...)

f x( )
f x( )–

Ci x( ) 0≤

Ci x( ) 0≥ Ci x( )– 0≤
Ci x( ) b≥ Ci x( ) b+– 0≤
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passes the arguments directly to the functions objfun when it is called from
inside fsolve,

F = objfun(x,P1,P2, ... )

Consider, for example, finding zeros of the function ellipj(u,m). The function
needs parameter m as well as input u. To look for a zero near u = 3, for m = 0.5

m = 0.5;
options = optimset('Display','off'); % Turn off Display
x = fsolve('ellipj',3,options,m)

returns

x = 
3.7081

Then, solve for the function ellipj.

f = ellipj(x,m)
f =

–2.9925e—008

The call to optimset to get the default options for fsolve implies that default
tolerances are used and that analytic gradients are not provided.

Multiobjective Examples
The previous examples involved problems with a single objective function. This
section demonstrates solving problems with multiobjective functions using
lsqnonlin, fminimax, and fgoalattain. Included is an example of how to
optimize parameters in a Simulink model.

Simulink Example
Let’s say that you want to optimize the control parameters in the Simulink
model optsim.mdl. (This model can be found in the Optimization Toolbox
directory. Note that Simulink must be installed on your system to load this
model.) The model includes a nonlinear process plant modeled as a Simulink
block diagram shown in Figure 1-1.
6
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Figure 1-1:  Plant with Actuator Saturation

The plant is an under-damped third-order model with actuator limits. The
actuator limits are a saturation limit and a slew rate limit. The actuator
saturation limit cuts off input values greater than 2 units or less than –2 units.
The slew rate limit of the actuator is 0.8 units/sec. The open-loop response of
the system to a step input is shown in Figure 1-2. (You can see this response by
opening the model (type optsim at the command line), opening the Scope block,
and running the simulation. The response plots to the Scope.)
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Figure 1-2:  Open-Loop Response

The problem is to design a feedback control law that tracks a unit step input to
the system. The closed-loop plant is entered in terms of the blocks where the
plant and actuator have been placed in a hierarchical Subsystem block. A
Scope block displays output trajectories during the design process. See
Figure 1-3.
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Figure 1-3:  Closed-Loop Model

One way to solve this problem is to minimize the error between the output and
the input signal. The variables are the parameters of the PID controller. If you
only need to minimize the error at one time unit, it would be a single objective
function. But the goal is to minimize the error for all time steps from 0 to 100,
thus producing a multiobjective function (one function for each time step).

The routine lsqnonlin is used to perform a least squares fit on the tracking of
the output. This is defined via a MATLAB function in the file tracklsq.m
shown below that defines the error signal. The error signal is yout, the output
computed by calling sim, minus the input signal 1.

The function tracklsq must run the simulation. The simulation can be run
either in the base workspace or the current workspace, i.e., the workspace of
the function calling sim, which in this case is tracklsq’s workspace. In this
example, the simset command is used to tell sim to run the simulation in the
current workspace by setting 'SrcWorkspace' to 'Current'.

To run the simulation in optsim, the variables Kp, Ki, Kd, a1, and a2 (a1 and a2
are variables in the Plant block) must all be defined. Kp, Ki, and Kd are the
variables we are optimizing. You can initialize a1 and a2 before calling
lsqnonlin and then pass these two variables as additional arguments.
lsqnonlin will then pass a1 and a2 to tracklsq each time it is called so you do
not have to use global variables.

After choosing a solver using the simset function, the simulation is run using
sim. The simulation is performed using a fixed-step fifth-order method to 100
seconds. When the simulation completes, the variables tout, xout, and yout
are now in the current workspace (that is, the workspace of tracklsq). The
1-19
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Outport block is used in the block diagram model to put yout into the current
workspace at the end of the simulation.

Step 1: Write an M-file tracklsq.m
function F = tracklsq(pid,a1,a2)
Kp = pid(1); % Move variables into model parameter names
Ki = pid(2);
Kd = pid(3);
% Choose solver and set model workspace to this function
opt = simset('solver','ode5','SrcWorkspace','Current');
[tout,xout,yout] = sim('optsim',[0 100],opt);
F = yout–1; % Compute error signal

Step 2: Invoke optimization routine
optsim % load the model
pid0 = [0.63 0.0504 1.9688] % Set initial values
a1 = 3; a2 = 43; % Initialize Plant variables in model
options = optimset('LargeScale','off','Display','iter',...

'TolX',0.001,'TolFun',0.001);
pid = lsqnonlin('tracklsq', pid0, [], [], options, a1, a2)
% put variables back in the base workspace
Kp = pid(1); Ki = pid(2); Kd = pid(3); 

The variable options passed to lsqnonlin defines the criteria and display
characteristics. In this case you ask for output, use the medium-scale
algorithm, and give termination tolerances for the step and objective function
on the order of 0.001.
0
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The optimization gives the solution for the Proportional, Integral, and
Derivative (Kp, Ki, Kd) gains of the controller after 73 function evaluations:

Directional 
Iteration  Func-count Residual Step-size derivative Lambda

1 3 8.66531 1 –3.48
2 10 6.78831 1 –0.0634 3.4355
3 19 5.99204 5.5 –0.0446 0.28612
4 28 4.74992 5.78 –0.0213 0.0227966
5 36 4.51795 1.25 0.0222 0.0744258
6 43 4.5115 0.58 –0.00633 0.03445
7 51 4.49455 2.99 0.000688 0.017225
8 58 4.4836 0.915 0.00203 0.0180998
9 66 4.47724 1.22 0.000845 0.00904992

10 73 4.47405 0.801 –0.00072 0.0113409
Optimization terminated successfully:
 Gradient in the search direction less than tolFun
 Gradient less than 10*(tolFun+tolX)
pid =
    2.9108    0.1443   12.8161

The resulting closed-loop step response is shown in Figure 1-4.
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Figure 1-4:  Closed-Loop Response using lsqnonlin

Note:   The call to sim results in a call to one of the Simulink ordinary
differential equation (ODE) solvers. A choice must be made about the type of
solver to use. From the optimization point of view, a fixed-step solver is the
best choice if that is sufficient to solve the ODE. However, in the case of a stiff
system, a variable-step method may be required to solve the ODE. The
numerical solution produced by a variable-step solver, however, is not a
smooth function of parameters because of step-size control mechanisms. This
lack of smoothness may prevent the optimization routine from converging.
The lack of smoothness is not introduced when a fixed-step solver is used. (For
a further explanation, see Solving Ordinary Differential Equations I --
Nonstiff Problems, by E. Hairer, S.P. Norsett, G. Wanner, Springer-Verlag,
pages 183-184.) The NCD Blockset is recommended for solving multiobjective
optimization problems in conjunction with variable-step solvers in Simulink;
it provides a special numeric gradient computation that works with Simulink
and avoids introducing the lack of smoothness problem.
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Another solution approach is to use the fminimax function. In this case, rather
than minimizing the error between the output and the input signal, you
minimize the maximum value of the output at any time t between 0 and 100.
Then in the function trackmmobj the objective function is simply the output
yout returned by the sim command. But minimizing the maximum output at
all time steps may force the output far below unity for some time steps. To keep
the output above 0.95 after the first 20 seconds, in the constraint function
trackkmmcon add a constraint yout >= 0.95 from t=20 to t=100. Because
constraints must be in the form g<=0, the constraint in the function is
g = –yout(20:100)+.95.

Both trackmmobj and trackmmcon use the result yout from sim, calculated from
the current pid values. The nonlinear constraint function is always called
immediately after the objective function in fmincon, fminimax, fgoalattain,
and fseminf with the same values. Thus you can avoid calling the simulation
twice by using assignin to assign the current value of F to the variable
F_TRACKMMOBJ in the base workspace. Then the first step in trackmmcon is to
use evalin to evaluate the variable F_TRACKMMOBJ in the base workspace, and
assign the result to F locally in trackmmcon.

Step 1: Write an M-file trackmmobj.m to compute objective function
function F = trackmmobj(pid,a1,a2)
Kp = pid(1);
Ki = pid(2);
Kd = pid(3);
% Compute function value
opt = simset('solver','ode5','SrcWorkspace','Current');
[tout,xout,yout] = sim('optsim',[0 100],opt);
F = yout;
assignin('base','F_TRACKMMOBJ',F);

Step 2: Write an M-file trackmmcon.m to compute nonlinear constraints
function [c,ceq] = trackmmcon(pid,a1,a2)
F = evalin('base','F_TRACKMMOBJ');
% Compute constraints
c = —F(20:100)+.95;
ceq = [ ];
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Note that fminimax will pass a1 and a2 to the objective and constraint values,
so trackmmcon needs input arguments for these variables even though it does
not use them.

Step 3: Invoke constrained optimization routine
optsim
pid0 = [0.63 0.0504 1.9688]
a1 = 3; a2 = 43;
options = optimset('Display','iter',...

'TolX',0.001,'TolFun',0.001);
pid = fminimax('trackmmobj',pid0,[],[],[],[],[],[],...

'trackmmcon',options,a1,a2)
% put variables back in the base workspace
Kp = pid(1); Ki = pid(2); Kd = pid(3); 

resulting in

Max  Directional 
 Iter   F-count  {F,constraints}  Step-size derivative    Procedure 
1      5           1.12            1 1.18     
2     11          1.264            1 –0.172     
3     17          1.055            1 –0.0128 Hessian 

modified
twice

4     23          1.004            1 3.49e–005 Hessian 
modified

5     29         0.9997            1 –1.36e–006 Hessian 
modified
twice

Optimization terminated successfully:
 Search direction less than 2*options.TolX and
  maximum constraint violation is less than options.TolCon
Active Constraints:
     1
    14
   182
pid =
    0.5894    0.0605    5.5295
4
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The last value shown in the MAX{F,constraints} column of the output shows
the maximum value for all the time steps is 0.9997. The closed loop response
with this result is shown in Figure 1-5.

This solution differs from the lsqnonlin solution as you are solving different
problem formulations.

Figure 1-5:  Closed-Loop Response using fminimax

Signal Processing Example
Consider designing a linear-phase Finite Impulse Response (FIR) filter. The
problem is to design a lowpass filter with magnitude one at all frequencies
between 0 and 0.1 Hz and magnitude zero between 0.15 and 0.5 Hz.

The frequency response H(f) for such a filter is defined by
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where A(f) is the magnitude of the frequency response. One solution is to apply
a goal attainment method to the magnitude of the frequency response. Given a
function that computes the magnitude, the function fgoalattain will attempt
to vary the magnitude coefficients a(n) until the magnitude response matches
the desired response within some tolerance. The function that computes the
magnitude response is given in filtmin.m. This function takes a, the
magnitude function coefficients, and w, the discretization of the frequency
domain we are interested in.

To set up a goal attainment problem, you must specify the goal and weights
for the problem. For frequencies between 0 and 0.1, the goal is one. For
frequencies between 0.15 and 0.5, the goal is zero. Frequencies between 0.1 and
0.15 are not specified so no goals or weights are needed in this range.

This information is stored in the variable goal passed to fgoalattain. The
length of goal is the same as the length returned by the function filtmin. So
that the goals are equally satisfied, usually weight would be set to abs(goal).
However, since some of the goals are zero, the effect of using weight=abs(goal)
will force the objectives with weight 0 to be satisfied as hard constraints, and
the objectives with weight 1 possibly to be underattained (see ‘‘The Goal
Attainment Method’’ section of the Introduction to Algorithms chapter).
Because all the goals are close in magnitude, using a weight of unity for all
goals will give them equal priority. (Using abs(goal) for the weights is more
important when the magnitude of goal differs more significantly.) Also, setting

options = optimset('GoalsExactAchieve',length(goal));

specifies that each objective should be as near as possible to its goal value
(neither greater nor less than).

H f( ) h n( )e j2πfn–

n 0=

2M

∑=

A f( )e j2πfM–=

A f( ) a n( ) 2πfn( )cos

n 0=

M 1–

∑=
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Step 1: Write an M-file filtmin.m
function y = filtmin(a,w)
n = length(a);
y = cos(w'*(0:n—1)*2*pi)*a ;

Step 2: Invoke optimization routine
% Plot with initial coefficients
a0 = ones(15,1);
incr = 50;
w = linspace(0,0.5,incr);

y0 = filtmin(a0,w);
clf, plot(w,y0.'–:');
drawnow;

% Set up the goal attainment problem
w1 = linspace(0,0.1,incr) ;
w2 = linspace(0.15,0.5,incr);
w0 = [w1 w2];
goal = [1.0*ones(1,length(w1)) zeros(1,length(w2))];
weight = ones(size(goal)); 

% Call fgoalattain
options = optimset('GoalsExactAchieve',length(goal));
[a,fval,attainfactor,exitflag] = fgoalattain('filtmin',...

a0,goal,weight,[],[],[],[],[],[],[],options,w0);

% Plot with the optimized (final) coefficients
y = filtmin(a,w);
hold on, plot(w,y,'r')
axis([0 0.5 –3 3])
xlabel('Frequency (Hz)')
ylabel('Magnitude Response (dB)')
legend('initial', 'final')
grid on

Compare the magnitude response computed with the initial coefficients and
the final coefficients (Figure 1-6). Note that you could use the remez function
in the Signal Processing Toolbox to design this filter.
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Figure 1-6:  Magnitude Response with Initial and Final Magnitude Coefficients
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Large-Scale Examples
Some of the optimization functions include algorithms for continuous
optimization problems especially targeted to large problems with sparsity or
structure. The main large-scale algorithms are iterative, i.e., a sequence of
approximate solutions is generated. In each iteration a linear system is
(approximately) solved. The linear systems are solved using the sparse matrix
capabilities of MATLAB and a variety of sparse linear solution techniques,
both iterative and direct.

Generally speaking the large-scale optimization methods preserve structure
and sparsity, using exact derivative information wherever possible. To solve
the large-scale problems efficiently, some problem formulations are restricted
(such as only solving overdetermined linear or nonlinear systems), or require
additional information (e.g., the nonlinear minimization algorithm requires
the gradient be computed in the user-supplied function).

Not all possible problem formulations are covered by the large-scale
algorithms. The following table describes what functionality is covered by the
large-scale methods. For example, for fmincon, the large-scale algorithm
covers the case where there are only bound constraints or only linear
equalities. For each problem formulation, the third column describes what
additional information is needed for the large-scale algorithms. For fminunc
and fmincon, the gradient must be computed along with the objective in the
user-supplied function (the gradient is not required for the medium-scale
algorithms).

Since these methods can also be used on small- to medium-scale problems that
are not necessarily sparse, the last column of the table emphasizes what
conditions are needed for large-scale problems to run efficiently without
exceeding your computer system’s memory capabilities, e.g., the linear
constraint matrices should be sparse. For smaller problems the conditions in
the last column are unnecessary.

Several examples follow this table to further clarify the contents of the table.
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Table 1-4:  Large-Scale Problem Coverage and Requirements

Function Problem
Formulations

Additional 
Information 
Needed

For Large Problems

fminunc Must provide
gradient for f(x)
in fun.

• Provide sparsity
structure of the
Hessian, or compute
the Hessian in fun.

• The Hessian should be
sparse.

fmincon •

•

Aeq is an m-by-n matrix
where

Must provide
gradient for f(x)
in fun.

• Provide sparsity
structure of the
Hessian, or compute
the Hessian in fun.

• The Hessian should be
sparse.

lsqnonlin •

•

F(x) must be overdetermined
(have at least as many
equations as variables).

Not applicable. • Provide sparsity
structure of the
Jacobian, or compute
the Jacobian in fun.

• The Jacobian should be
sparse.

f x( )
x

min

f x( )
x

min

such that l x u≤ ≤
where l u<

f x( )
x

min

such that Aeq x⋅ beq=

m n.≤

1
2--- F x( ) 2

2

x
min

1
2--- Fi x( )

2

i
∑=

1
2--- F x( ) 2

2

x
min

1
2--- Fi x( )

2

i
∑=

such that l x u≤ ≤
where l u<
0
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lsqcurvefit •

•

F(x,xdata) must be
overdetermined (have at least
as many equations as
variables).

Not applicable. • Provide sparsity
structure of the
Jacobian, or compute
the Jacobian in fun.

• The Jacobian should be
sparse.

fsolve

F(x) must be overdetermined
(have at least as many
equations as variables).

Not applicable. • Provide sparsity struc-
ture of the Jacobian or
compute the Jacobian
in fun.

• The Jacobian should be
sparse.

lsqlin

C is an m-by-n matrix where
i.e., the problem must

be overdetermined.

Not applicable. C should be sparse.

Table 1-4:  Large-Scale Problem Coverage and Requirements (Continued)

Function Problem
Formulations

Additional 
Information 
Needed

For Large Problems

1
2--- F x xdata,( ) ydata– 2

2

x
min

1
2--- F x xdata,( ) ydata– 2

2

x
min

such that l x u≤ ≤
where l u<

F x( ) 0=

C x⋅ d–
2

x
min 2

such that l x u≤ ≤
where l u<

m n,≥
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In the examples below, many of the M-file functions are available in the
Optimization Toolbox optim directory. Most of these do not have a fixed
problem size, i.e., the size of your starting point xstart will determine the size
problem that is computed. If your computer system cannot handle the size
suggested in the examples below, use a smaller dimension start point to run
the problems. If the problems have upper or lower bounds or equalities, you
will have to adjust the size of those vectors or matrices as well.

linprog Not applicable. A and Aeq should be
sparse.

quadprog •

•

Aeq is an m-by-n matrix
where

Not applicable. • H should be sparse.

• Aeq should be sparse.

Table 1-4:  Large-Scale Problem Coverage and Requirements (Continued)

Function Problem
Formulations

Additional 
Information 
Needed

For Large Problems

fTx
x

min such that

A x⋅ b≤
Aeq x⋅ beq=

l x u≤ ≤

1
2---xTHx fTx+

x
min such that

l x u≤ ≤
where l u<

1
2---xTHx fTx+

x
min such that

Aeq x⋅ beq=

m n.≤
2
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Nonlinear Equations with Jacobian
Consider the problem of finding a solution to a system of nonlinear equations
whose Jacobian is sparse. The dimension of the problem in this example is
1000. The goal is to find x such that F(x) = 0. Assuming n=1000, the nonlinear
equations are

To solve a large nonlinear system of equations, F(x) = 0, use the large-scale
method available in fsolve.

Step 1: Write an M-file nlsf1.m that computes the objective function values 
and the Jacobian

function [F,J] = nlsf1(x);
% Evaluate the vector function
n = length(x);
F = zeros(n,1);
i = 2:(n—1);
F(i) = (3—2*x(i)).*x(i)—x(i—1)—2*x(i+1)1+ 1;
F(n) = (3—2*x(n)).*x(n)—x(n—1) + 1;
F(1) = (3—2*x(1)).*x(1)—2*x(2) + 1;
% Evaluate the Jacobian if nargout > 1
if nargout > 1
   d = —4*x + 3*ones(n,1); D = sparse(1:n,1:n,d,n,n);
   c = —2*ones(n—1,1); C = sparse(1:n—1,2:n,c,n,n);
   e = —ones(n-1,1); E = sparse(2:n,1:n-1,e,n,n);
   J = C + D + E;
end

Step 2: Call the system of equations solve routine
xstart = –ones(1000,1);
fun = 'nlsf1'; 
options = optimset('Display','iter','Jacobian','on');
[x,fval,exitflag,output] = fsolve(fun,xstart,options);

F 1( ) 3x1 2x1
2 2x2–– 1+=

F i( ) 3xi 2xi
2 xi 1–– 2xi 1+–– 1+=

F n( ) 3xn 2xn
2 xn 1––– 1+=
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A starting point is given as well as the function name. The large-scale method
is the default, so it is not necessary to specify this in the options argument.
Output at each iteration is specified. Finally, so that fsolve will use the
Jacobian information available in nlsf1.m, you need to turn the Jacobian
parameter 'on' using optimset.

These commands display this output:

Optimization terminated successfully:Relative function value 
changing by less than OPTIONS.TolFun

A linear system is (approximately) solved in each major iteration using the
preconditioned conjugate gradient method. The default value for the
PrecondBandWidth is 0 in options, so a diagonal preconditioner is used. (The
PrecondBandWidth specifies the bandwidth of the preconditioning matrix. A
bandwidth of 0 means there is only one diagonal in the matrix.)

From the first-order optimality values, fast linear convergence occurs. The
number of CG iterations required per major iteration is low, at most 5 for a
problem of 1000 dimensions, implying the linear systems are not very difficult
to solve in this case (though more work is required as convergence progresses).

It is possible to override the default choice of preconditioner (diagonal) by
choosing a banded preconditioner through the use of the parameter
PrecondBandWidth. If you want to use a tridiagonal preconditioner, i.e., a
preconditioning matrix with three diagonals (or bandwidth of one), set
PrecondBandWidth to the value 1:

options = optimset('Display','iter','Jacobian','on',...
'PrecondBandWidth',1) ;

[x,fval,exitflag,output] = fsolve(fun,xstart,options) ;

In this case the output is

Iteration Func-count f(x)
Norm of

step
First-order
 optimality CG-iterations

1 2 1011 1 19 0
2 3 16.1942 7.91898 2.35 3
3 4 0.0228027 1.33142 0.291 3
4 5 0.000103359 0.0433329 0.0201 4
5 6 7.3792e—007 0.0022606 0.000946 4
6 7 4.02299e—010 0.000268381 4.12e—005 5
4
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Optimization terminated successfully:
 Relative function value changing by less than OPTIONS.TolFun

Note that although the same number of iterations takes place, the number of
PCG iterations has dropped, so less work is being done per iteration.

Nonlinear Equations with Jacobian Sparsity Pattern
In the preceding example the function nlsf1 computes the Jacobian J, a sparse
matrix, along with the evaluation of F. What if the code to compute the
Jacobian is not available? By default, if you do not indicate the Jacobian can be
computed in nlsf1 (using the Jacobian parameter in options), fsolve,
lsqnolin, and lsqcurvefit will instead use finite-differencing to approximate
the Jacobian.

In order for this finite-differencing to be as efficient as possible, the sparsity
pattern of the Jacobian should be supplied, using the JacobPattern parameter
in options. That is, supply a sparse matrix Jstr whose nonzero entries
correspond to nonzeroes of the Jacobian for all x. Indeed, the nonzeroes of Jstr
can correspond to a superset of the nonzero locations of J; however, in general
the computational cost of the sparse finite-difference procedure will increase
with the number of nonzeroes of Jstr.

Providing the sparsity pattern can drastically reduce the time needed to
compute the finite-differencing on large problems. If the sparsity pattern is not
provided (and the Jacobian is not computed in objective function either) then,
in this problem nlsfs1, the finite-differencing code will attempt to compute all
1000-by-1000 entries in the Jacobian. But in this case there are only 2998
nonzeros, substantially less than the 1,000,000 possible nonzeros the
finite-differencing code will attempt to compute. In other words, this problem
is solvable if the sparsity pattern is provided. If not, most computers will run
out of memory when the full dense finite-differencing is attempted. On most
small problems, it is not essential to provide the sparsity structure.

Iteration Func-count f(x) Norm of
step

First-order
Optimality

CG-iterations

1 2 1011 1 19 0
2 3 16.0839 7.92496 1.92 1
3 4 0.0458181 1.3279 0.579 1
4 5 0.000101184 0.0631898 0.0203 2
5 6 3.16615e—007 0.00273698 0.00079 2
6 7 9.72481e—010 0.00018111 5.82e—005 2
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Suppose the sparse matrix Jstr, computed previously, has been saved in file
nlsdat1.mat. The following driver calls fsolve applied to nlsf1a which is the
same as nlsf1 except only the function values are returned; sparse
finite-differencing is used to estimate the sparse Jacobian matrix as needed.

Step 1: Write an M-file nlsf1a.m that computes the objective function 
values

function F = nlsf1a(x);
% Evaluate the vector function
n = length(x);
F = zeros(n,1);
i = 2:(n—1);
F(i) = (3—2*x(i)).*x(i)—x(i—1)—2*x(i+1) + 1;
F(n) = (3—2*x(n)).*x(n)—x(n—1) + 1;
F(1) = (3—2*x(1)).*x(1)—2*x(2) + 1;

Step 2: Call the system of equations solve routine
xstart = –ones(1000,1); 
fun = 'nlsf1a';
load nlsdat1  % Get Jstr
options = optimset('Display','iter','JacobPattern',Jstr,...

'PrecondBandWidth',1);
[x,fval,exitflag,output] = fsolve(fun,xstart,options);

In this case, the output displayed is

Optimization terminated successfully:
 Relative function value changing by less than OPTIONS.TolFun

Alternatively, it is possible to choose a sparse direct linear solver (i.e., a sparse
QR factorization) by indicating a “complete” preconditioner, i.e., if we set

Iteration Func-count f(x)
Norm of

step
First-order
optimality CG-iterations

1 6 1011 1 19 0
2 11 16.0839 7.92496 1.92 1
3 16 0.0458181 1.3279 0.579 1
4 21 0.000101184 0.0631897 0.0203 2
5 26 3.16615e—007 0.00273698 0.00079 2
6 31 9.72482e—010 0.00018111 5.82e—005 2
6
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PrecondBandWidth to Inf, then a sparse direct linear solver will be used
instead of a preconditioned conjugate gradient iteration

xstart = –ones(1000,1);
fun = 'nlsf1a';
load nlsdat1  % Get Jstr
options = optimset('Display','iter','JacobPattern',Jstr,...

'PrecondBandWidth',inf);
[x,fval,exitflag,output] = fsolve(fun,xstart,options);

and the resulting display is

Optimization terminated successfully:
 Relative function value changing by less than OPTIONS.TolFun

When the sparse direct solvers are used, the CG iteration will be 1 for that
(major) iteration, as shown in the output under CG-iterations. Notice that the
final optimality and f(x) value (which for fsolve, f(x), is the
sum-of-the-squares of the function values) are closer to zero than using the
PCG method, which is often the case.

Nonlinear Least-Squares with Full Jacobian 
Sparsity Pattern
The large-scale methods in lsqnonlin, lsqcurvefit, and fsolve can be used
with small- to medium-scale problems without computing the Jacobian in fun
or providing the Jacobian sparsity pattern. (This example also applies to the
case of using fmincon or fminunc without computing the Hessian or supplying
the Hessian sparsity pattern.) How small is small- to medium-scale? No
absolute answer is available, as it depends on the amount of virtual memory
available in your computer system configuration.

Suppose your problem has m equations and n unknowns. If the command 
J = sparse(ones(m,n)) causes an OUT OF MEMORY error on your machine, then

Iteration Func-count f(x)
Norm of

step
First-order
optimality

CG-iterations

1 6 1011 1 19 0
2 11 15.9018 7.92421 1.89 1
3 16 0.0128163 1.32542 0.0746 1
4 21 1.73537e—008 0.0397925 0.000196 1
5 26 1.13136e—018 4.55542e—005 2.76e—009 1
1-37



1 Tutorial

1-3
this is certainly too large a problem. If it does not result in an error, the
problem may still be too large, but you can only find out by running it and
seeing if MATLAB is able to run within the amount of virtual memory
available on your system.

Let’s say you have a small problem with 10 equations and 2 unknowns, such as
find x that minimizes

starting at the point x = [0.3, 0.4].

Because lsqnonlin assumes that the sum-of-squares is not explicitly formed in
the user function, the function passed to lsqnonlin should instead compute the
vector valued function

for (that is, F should have k components).

Step 1: Write an M-file myfun.m that computes the objective function 
values

function F = myfun(x)
k = 1:10;
F = 2 + 2*k–exp(k*x(1))–exp(k*x(2));

Step 2: Call the nonlinear least-squares routine
x0 = [0.3 0.4] % Starting guess
[x,resnorm] = lsqnonlin('myfun',x0) % Invoke optimizer

Since the Jacobian is not computed in myfun.m (and the Jacobian parameter in
options is 'off' by default), and no Jacobian sparsity pattern is provided
using the JacobPattern parameter in options, lsqnonlin will call the
large-scale method, the default for lsqnonlin, with JacobPattern set to
Jstr = sparse(ones(10,2)). When the finite-differencing routine is called the
first time, it will detect that Jstr is actually a dense matrix, i.e., that no speed
benefit is derived from storing it as a sparse matrix, and from then on will use
Jstr = ones(10,2) (a full matrix) for the optimization computations.

2 2k e
kx1– e

kx2–+( )
2

k 1=

10

∑

Fk x( ) 2 2k e
kx1– e

kx2–+=

k 1 to 10=
8
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After about 24 function evaluations, this example gives the solution:

x = 
0.2578  0.2578

resnorm % residual or sum of squares
resnorm = 

124.3622

Most computer systems will be able to handle much larger full problems, say
into the 100’s of equations and variables. But if there is some sparsity structure
in the Jacobian (or Hessian) that can be taken advantage of, the large-scale
methods will always run faster if this information is provided.

Nonlinear Minimization with Gradient and Hessian
This example involves a solving a nonlinear minimization problem with a
tridiagonal Hessian matrix H(x) first computed explicitly, and then by
providing the Hessian’s sparsity structure for the finite-differencing routine.

The problem is to find x to minimize

(1-7)

where n=1000.

Step 1: Write an M-file brownfgh.m that computes the objective function, 
the gradient of the objective, and the sparse tridiagonal Hessian matrix
This file is rather lengthy and is not included here. You can view the code with
the command

type brownfgh

Because brownfgh computes the gradient and Hessian values as well as the
objective function, you need to use optimset to indicate this information is
available in brownfgh using the GradObj and Hessian parameters.

f x( ) xi
2( )

xi 1+
2 1+( )

xi 1+
2( )

xi
2 1+( )

+

i 1=

n 1–

∑=
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Step 2: Call a nonlinear minimization routine with a starting point xstart
n = 1000;
xstart = –ones(n,1); 
xstart(2:2:n,1) = 1;
options = optimset('GradObj',...

'on','Hessian','on');
[x,fval,exitflag,output] = fminunc('brownfgh',xstart,options); 

This 1000 variable problem is solved in 8 iterations and 7 conjugate gradient
iterations with a positive exitflag indicating convergence; the final function
value and measure of optimality at the solution x are both close to zero (for
fminunc, the first order optimality is the gradient of the function, which is zero
at a local minimum):

exitflag =
     1
fval =
  2.8709e—017
output.iterations
ans =
     8
output.cgiterations
ans =
     7
output.firstorderopt
ans =
4.7948e—010

Nonlinear Minimization with Gradient and Hessian 
Sparsity Pattern
Next we solve the same problem but the Hessian matrix is now approximated
by sparse finite-differences instead of explicit computation. To use the
large-scale method in fminunc, you must compute the gradient in fun; it is not
optional as in the medium-scale method.

The M-file function brownfg computes the objective function and gradient.
0
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Step 1: Write an M-file brownfg.m that computes the objective function 
and the gradient of the objective

function [f,g] = brownfg(x,dummy)
% BROWNFG Nonlinear minimization test problem
% 
% Evaluate the function.
n=length(x); y=zeros(n,1);
i=1:(n—1);
y(i)=(x(i).^2).^(x(i+1).^2+1) + ...

(x(i+1).^2).^(x(i).^2+1);
  f=sum(y);
% Evaluate the gradient if nargout > 1
  if nargout > 1
     i=1:(n—1); g = zeros(n,1);
     g(i) = 2*(x(i+1).^2+1).*x(i).* ... 

((x(i).^2).^(x(i+1).^2))+ ...
2*x(i).*((x(i+1).^2).^(x(i).^2+1)).* ... 
log(x(i+1).^2);

     g(i+1) = g(i+1) + ...
2*x(i+1).*((x(i).^2).^(x(i+1).^2+1)).* ... 
log(x(i).^2) + ...
2*(x(i).^2+1).*x(i+1).* ... 
((x(i+1).^2).^(x(i).^2));

  end

To allow efficient computation of the sparse finite-difference approximation of
the Hessian matrix H(x), the sparsity structure of H must be predetermined.
In this case assume this structure, Hstr, a sparse matrix, is available in file
brownhstr.mat. Using the spy command you can see that Hstr is indeed sparse
(only 2998 nonzeros). Use optimset to set the HessPattern parameter to Hstr.
When a problem as large as this has obvious sparsity structure, not setting the
HessPattern parameter will require a huge amount of unnecessary memory
and computation since fminunc will attempt to use finite-differencing on a full
Hessian matrix of one million nonzero entries.

You must also set the GradObj parameter to 'on' using optimset since the
gradient is computed in brownfg.m. Then to execute fminunc:
1-41



1 Tutorial

1-4
Step 2: Call a nonlinear minimization routine with a starting point xstart
fun = 'brownfg';
load brownhstr  % get Hstr, structure of the Hessian
spy(Hstr) % view the sparsity structure of Hstr
n = 1000;
xstart = –ones(n,1); 
xstart(2:2:n,1) = 1;
options = optimset('GradObj','on','HessPattern',Hstr);
[x,fval,exitflag,output] = fminunc(fun,xstart,options); 

This 1000 variable problem is solved in 8 iterations and 7 conjugate gradient
iterations with a positive exitflag indicating convergence; the final function
value and measure of optimality at the solution x are both close to zero (for
fminunc, the first order optimality is the gradient of the function, which is zero
at a local minimum):

exitflag =
     1
fval =
7.4738e—017

output.iterations
ans =
     8
output.cgiterations
ans =
     7
output.firstorderopt
ans =
7.9822e—010
2
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Nonlinear Minimization with Bound Constraints and 
Banded Preconditioner
The goal in this problem is to minimize the nonlinear function

such that , where n is 800 (n should be a multiple of 4),
p=7/3, and x0 = xn+1 = 0.

Step 1: Write an M-file tbroyfg.m that computes the objective function and 
the gradient of the objective
The M-file function, tbroyfg.m, computes the function value and gradient.
This file is rather lengthy and is not included here. You can see the code for this
function using the command

type tbroyfg

f x( ) 1 3 2xi–( )xi xi 1–– xi 1+– 1+
p

i 1=

n

∑ xi xi n 2⁄++
p

i 1=

n
2---

∑+ +=

10.0– xi 10.0≤ ≤
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The sparsity pattern of the Hessian matrix has been predetermined and stored
in the file tbroyhstr.mat. The sparsity structure for the Hessian of this
problem is banded, as you can see in the spy plot below:

load tbroyhstr
spy(Hstr):
4
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The center stripe is itself a 5-banded matrix

spy(Hstr(1:20,1:20))

Use optimset to set the HessPattern parameter to Hstr. When a problem as
large as this has obvious sparsity structure, not setting the HessPattern
parameter will require a huge amount of unnecessary memory and
computation since fmincon will attempt to use finite-differencing on a full
Hessian matrix of 640,000 nonzero entries.

You must also set the GradObj parameter to 'on' using optimset since the
gradient is computed in tbroyfg.m. Then to execute fmincon:

Step 2: Call a nonlinear minimization routine with a starting point xstart
fun = 'tbroyfg';
load tbroyhstr  % get Hstr, structure of the Hessian
n = 800;
xstart = –ones(n,1); xstart(2:2:n) = 1;
lb = —10*ones(n,1); ub = —lb;
options = optimset('GradObj','on','HessPattern',Hstr); 
[x,fval,exitflag,output] = ... 

fmincon('tbroyfg',xstart,[],[],[],[],lb,ub,[],options);
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After eight iterations, the exitflag, fval and output values are:

exitflag =
     1
fval =
  270.4790
output = 
       iterations: 8
        funcCount: 8
     cgiterations: 18
    firstorderopt: 0.0163
        algorithm: 'large-scale: trust-region reflective Newton'

For bound constrained problems, the first-order optimality is the infinity norm
of v.*g, where v is defined as in “Box Constraints” in Chapter 3, and g is the
gradient.

Because of the 5-banded center stripe, you can improve the solution by using a
5-banded preconditioner instead of the default diagonal preconditioner. Using
the optimset function, reset the PrecondBandWidth parameter to two and solve
the problem again. (The bandwidth is the number of upper (or lower) diagonals,
not counting the main diagonal.)

fun = 'tbroyfg';
load tbroyhstr % get Hstr, structure of the Hessian
n = 800;
xstart = –ones(n,1); xstart(2:2:n,1) = 1;
lb = —10*ones(n,1); ub = —lb;
options = optimset('GradObj','on','HessPattern',Hstr, ... 

'PrecondBandWidth',2); 
[x,fval,exitflag,output] = ... 

fmincon('tbroyfg',xstart,[],[],[],[],lb,ub,[],options); 
6
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The number of iterations actually goes up by two; however the total number of
CG iterations drops from 18 to 15. The first-order optimality measure is
reduced by a factor of 1e—3.

exitflag =
     1
fval =
  2.7048e+002
output = 
       iterations: 10
        funcCount: 10
     cgiterations: 15
    firstorderopt: 7.5339e—005
        algorithm: 'large-scale: trust-region reflective Newton'

Nonlinear Minimization with Equality Constraints

The large-scale method for fmincon can handle equality constraints if no other
constraints exist. Suppose you want to minimize the same objective in Eq. 1-7,
which is coded in the function brownfgh.m, where n = 1000, such that

for Aeq that has 100 equations (so Aeq is a 100-by-1000 matrix).

Step 1: Write an M-file brownfgh.m that computes the objective function, 
the gradient of the objective, and the sparse tridiagonal Hessian matrix
As before, this file is rather lengthy and is not included here. You can view the
code with the command

type brownfgh

Because brownfgh computes the gradient and Hessian values as well as the
objective function, you need to use optimset to indicate this information is
available in brownfgh using the GradObj and Hessian parameters.

The sparse matrix Aeq and vector beq are available in the file browneq.mat

load browneq

Aeq x⋅ beq=
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The linear constraint system is 100-by-1000, has unstructured sparsity (use
spy(Aeq) to view the sparsity structure) and is not too badly ill-conditioned:

condest(Aeq*Aeq')
ans =
2.9310e+006

Step 2: Call a nonlinear minimization routine with a starting point xstart
fun = 'brownfgh';
load browneq % get Aeq and beq, the linear equalities
n = 1000;
xstart = —ones(n,1); xstart(2:2:n) = 1;
options = optimset('GradObj','on','Hessian','on', ... 

'PrecondBandWidth', inf); 
[x,fval,exitflag,output] = ... 

fmincon('brownfgh',xstart,[],[],Aeq,beq,[],[],[],options); 

Setting the parameter PrecondBandWidth to inf will cause a sparse direct
solver to be used instead of preconditioned conjugate gradients.

The exitflag indicates convergence with the final function value fval after 16
iterations

exitflag =
     1
fval =
  205.9313
output = 
       iterations: 16
        funcCount: 16
     cgiterations: 14
    firstorderopt: 2.1434e—004
        algorithm: 'large-scale: projected trust-region Newton'

The linear equalities are satisfied at x

norm(Aeq*x-beq)
ans =
  1.1913e—012
8
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Quadratic Minimization with Bound Constraints
To minimize a large-scale quadratic with upper and lower bounds, you can use
the quadprog function.

The problem stored in the MAT-file qpbox1.mat is a positive definite quadratic,
and the Hessian matrix H is tridiagonal, subject to upper (ub) and lower (lb)
bounds.

Load the Hessian and define f, lb, ub. Call a quadratic minimization 
routine with a starting point xstart

load qpbox1  % Get H
lb = zeros(400,1); lb(400) = —inf;
ub = 0.9*ones(400,1); ub(400) = inf;
f = zeros(400,1); f([1 400]) = —2;
xstart = 0.5*ones(400,1);
[x,fval,exitflag,output] = ... 

quadprog(H,f,[],[],[],[],lb,ub,xstart);

Looking at the resulting values of exitflag and output

exitflag =
     1
output = 
    firstorderopt: 7.8435e—006
       iterations: 20
     cgiterations: 1809
        algorithm: 'large-scale: reflective trust-region'

you can see that while convergence occurred in 20 iterations, the high number
of CG iterations indicates that the cost of the linear system solve is high. In
light of this cost, one strategy would be to limit the number of CG iterations per
optimization iteration. The default number is the dimension of the problem
divided by two, 200 for this problem. Suppose you limit it to 50 using the
MaxPCGIter flag in options

options = optimset('MaxPCGIter',50);
[x,fval,exitflag,output] = ... 

quadprog(H,f,[],[],[],[],lb,ub,xstart,options);
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This time convergence still occurs and the total number of CG iterations (1547)
has dropped.

exitflag =
     1
output = 
    firstorderopt: 2.3821e—005
       iterations: 36
     cgiterations: 1547
        algorithm: 'large-scale: reflective trust-region'

A second strategy would be to use a direct solver at each iteration by setting
the PrecondBandWidth parameter to inf.

options = optimset('PrecondBandWidth',inf);
[x,fval,exitflag,output] = ... 

quadprog(H,f,[],[],[],[],lb,ub,xstart,options);

Now the number of iterations has dropped to 10.

exitflag =
     1
output = 
    firstorderopt: 4.8955e—007
       iterations: 10
     cgiterations: 9
        algorithm: 'large-scale: reflective trust-region'

Using a direct solve at each iteration usually causes the number of iterations
to decrease, but often takes more time per iteration. For this problem, the
trade-off is beneficial as the time for quadprog to solve the problem decreases
by a factor of 10.

Linear Least-Squares with Bound Constraints
Many situations give rise to sparse linear least-squares problems, often with
bounds on the variables. The next problem requires that the variables be
nonnegative. This problem comes from fitting a function approximation to a
piecewise linear spline. Specifically, particles are scattered on the unit square.
The function to be approximated is evaluated at these points, and a piecewise
0
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linear spline approximation is constructed under the condition that (linear)
coefficients are not negative. There are 2000 equations to fit on 400 variables.

load particle % Get C, d
lb = zeros(400,1);
[x,resnorm,residual,exitflag,output] = ... 

lsqlin(C,d,[],[],[],[],lb);

The default diagonal preconditioning works fairly well.

exitflag =
     1
resnorm =
    22.5794
output = 
        algorithm: 'large-scale: trust-region reflective Newton'
    firstorderopt: 2.7870e-005
       iterations: 10
     cgiterations: 42

The first-order optimality can be improved (decreased) by using a sparse
QR-factorization in each iteration: set PrecondBandWidth to inf.

options = optimset('PrecondBandWidth',inf);
[x,resnorm,residual,exitflag,output] = ... 

lsqlin(C,d,[],[],[],[],lb,[],[],options);

The number of iterations and the first-order optimality both decrease

exitflag =
     1
resnorm =
    22.5794
output = 
        algorithm: 'large-scale: trust-region reflective Newton'
    firstorderopt: 5.5907e—015
       iterations: 12
     cgiterations: 11
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Linear Programming with Equalities and 
Inequalities
The problem is

and you can load the matrices and vectors A, Aeq, b, beq, f and the lower
bounds lb into the MATLAB workspace with

load sc50b

This problem in sc50b.mat has 48 variables, 30 inequalities and 20 equalities.

You can use linprog to solve the problem.

[x,fval,exitflag,output] = ...
linprog(f,A,b,Aeq,beq,lb,[],[],optimset('Display','iter'));

Since the iterative display was set using optimset, the results printed to the
command line window are

Residuals:   Primal     Dual     Duality    Total
               Infeas    Infeas      Gap       Rel
               A*x-b    A'*y+z-f    x'*z      Error
  ---------------------------------------------------
  Iter    0:  1.50e+003 2.19e+001 1.91e+004 1.00e+002
  Iter    1:  1.15e+002 2.94e—015 3.62e+003 9.90e—001
  Iter    2:  1.16e—012 2.21e—015 4.32e+002 9.48e—001
  Iter    3:  3.23e—012 5.16e—015 7.78e+001 6.88e—001
  Iter    4:  5.78e—011 7.61e—016 2.38e+001 2.69e—001
  Iter    5:  9.31e—011 1.84e—015 5.05e+000 6.89e—002
  Iter    6:  2.96e—011 1.62e—016 1.64e—001 2.34e—003
  Iter    7:  1.51e—011 2.74e—016 1.09e—005 1.55e—007
  Iter    8:  1.51e—012 2.37e—016 1.09e—011 1.51e—013

Optimization terminated successfully.

For this problem the large-scale linear programming algorithm quickly reduces
the scaled residuals below the default tolerance of 1e—08.

fTxmin such that

Aeq x⋅ beq=

A x⋅ b≤
x 0≥
2
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The exitflag value is positive telling you linprog converged. You can also get
the final function value in fval and the number of iterations in
output.iterations.

exitflag =
     1
fval =
 —70.0000
output = 
      iterations: 8
    cgiterations: 0
       algorithm: 'lipsol'

Linear Programming with Dense Columns in the 
Equalities
The problem is

and you can load the matrices and vectors Aeq, beq, f, lb, and ub into the
MATLAB workspace with

load densecolumns

The problem in densecolumns.mat has 1677 variables and 627 equalities with
lower bounds on all the variables, and upper bounds on 399 of the variables.
The equality matrix Aeq has dense columns among its first 25 columns, which
is easy to see with a spy plot.

spy(Aeq)

fTxmin such that
Aeq x⋅ beq=

lb x ub≤ ≤
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You can use linprog to solve the problem.

[x,fval,exitflag,output] = ...
linprog(f,[],[],Aeq,beq,lb,ub,[],optimset('Display','iter'));

Since the iterative display was set using optimset, the results printed to the
command line window are

Residuals:   Primal     Dual     Upper    Duality     Total
               Infeas    Infeas    Bounds     Gap        Rel
               A*x-b   A'*y+z-w-f {x}+s-ub  x'*z+s'*w   Error
  -------------------------------------------------------------
  Iter    0:  1.67e+003 8.11e+002 1.35e+003 5.30e+006 2.92e+001
  Iter    1:  1.37e+002 1.33e+002 1.11e+002 1.27e+006 2.48e+000
  Iter    2:  3.56e+001 2.38e+001 2.89e+001 3.42e+005 1.99e+000
  Iter    3:  4.86e+000 8.88e+000 3.94e+000 1.40e+005 1.89e+000
  Iter    4:  4.24e-001 5.89e-001 3.44e-001 1.91e+004 8.41e-001
  Iter    5:  1.23e-001 2.02e-001 9.97e-002 8.41e+003 5.79e-001
  Iter    6:  3.98e-002 7.91e-002 3.23e-002 4.05e+003 3.52e-001
  Iter    7:  7.25e-003 3.83e-002 5.88e-003 1.85e+003 1.85e-001
  Iter    8:  1.47e-003 1.34e-002 1.19e-003 8.12e+002 8.52e-002
  Iter    9:  2.52e-004 3.39e-003 2.04e-004 2.78e+002 2.99e-002
  Iter   10:  3.46e-005 1.08e-003 2.81e-005 1.09e+002 1.18e-002
  Iter   11:  6.95e-007 1.53e-012 5.64e-007 1.48e+001 1.62e-003
  Iter   12:  1.04e-006 2.26e-012 3.18e-008 8.32e-001 9.09e-005
  Iter   13:  3.08e-006 1.23e-012 3.86e-009 7.26e-002 7.94e-006
  Iter   14:  3.75e-007 1.09e-012 6.53e-012 1.11e-003 1.21e-007
  Iter   15:  5.21e-008 1.30e-012 3.27e-013 8.62e-008 9.15e-010

Optimization terminated successfully.

You can see the returned values of exitflag, fval, and output .

exitflag =
     1
fval =
  9.1464e+003
output = 
      iterations: 15
    cgiterations: 225
       algorithm: 'lipsol'
4
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This time the number of PCG iterations (in output.cgiterations) is nonzero
because the dense columns in Aeq are detected. Instead of using a sparse
Cholesky factorization, linprog tries to use the Sherman-Morrison formula to
solve a linear system involving Aeq*Aeq'. If the Sherman-Morrison formula
does not give a satisfactory residual, a PCG iteration is used. See “Main
Algorithm” in the “Large-Scale Linear Programming” section of Chapter 3.
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Default Parameter Settings
The options structure contains parameters used in the optimization routines.
If, on the first call to an optimization routine, the options structure is not
provided, or is empty, a set of default parameters is generated.

Some of the default options parameters are calculated using factors based on
problem size, such as MaxFunEvals. Some parameters are dependent on the
specific optimization routine and are documented in Chapter 4. The
parameters in the options structure are shown in Table 4-3 in Chapter 4.

Changing the Default Settings
The function optimset creates or updates an OPTIONS variable to pass to the
various optimization functions. The arguments to the optimset function are
parameter name and parameter value pairs, such as TolX and 1e–4. Any
unspecified properties have default values. You need to type only enough
leading characters to define the parameter name uniquely. Case is ignored for
parameter names. For parameter values that are strings, however, case and
the exact string are necessary.

help optimset provides information that defines the different parameters and
describes how to use them.

Here are some examples of the use of optimset.

Returning All Parameters
optimset returns all the parameters that can be set with typical values and
default values.

Determining Parameters Used by a Function
The options structure defines the parameters that can be used by the
functions provided by the toolbox. Because functions do not use all the
parameters, it may be useful to find which parameters are used by a particular
function.

To determine which options structure fields are used by a function, pass the
name of the function (in this example, fmincon) to optimset:

optimset('fmincon')
6
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or

optimset fmincon

This statement returns a structure. Fields not used by the function have empty
values ([]); fields used by the function are set to their default values for the
given function.

Displaying Output
To display output at each iteration instead of just at termination, enter:

options = optimset('Display', 'iter');

This command sets the options.Display field value to 'iter', which causes
the toolbox to display output at each iteration.

Running Medium-Scale Optimization
For functions that support medium- and large-scale optimization problems, the
default is for the function to use the large-scale algorithm. To use the
medium-scale algorithm, enter:

options = optimset('LargeScale', 'off');

Setting More Than One Parameter
You can specify multiple parameters with one call to optimset. For example,
to reset the output option and the tolerance on x, enter:

options = optimset('Display', 'iter', 'TolX', 1e–6);

Updating an options Structure
To update an existing options structure, call optimset and pass options as
the first argument:

options = optimset(options, 'Display', 'iter', 'TolX', 1e–6);

Retrieving Parameter Values
Use the optimget function to get parameter values from an options structure.
For example, to get the current display option, enter:

verbosity = optimget(options, 'Display');
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Displaying Iterative Output

Output Headings: Medium-Scale Algorithms
When the options Display parameter is set to 'iter' for fminsearch,
fminbnd, fzero, fgoalattain, fmincon, lsqcurvefit, fminunc, fsolve,
lsqnonlin, fminimax, and fseminf, output is produced in column format.

For fminsearch the column headings are

Iteration   Func-count     min f(x)         Procedure

where

• Iteration is the iteration number.

• Func-count is the number of function evaluations.

• min f(x) is the minimum function value in the current simplex.

• Procedure gives the current simplex operation: initial, expand, reflect,
shrink, contract inside and contract outside.

For fzero and fminbnd the column headings are

Func-count      x           f(x)         Procedure

where

• Func-count is the number of function evaluations (which for fzero is the
same as the number of iterations).

• x is the current point.

• f(x) is the current function value at x.

• Procedure gives the current operation. For fzero these include initial
(initial point), search (search for a interval containing a zero), bisection
(bisection search), and interpolation. For fminbnd, the possible operations
are initial, golden (golden section search), and parabolic (parabolic
interpolation).
8
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For fminunc, the column headings are

Directional
Iteration  Func-count     f(x)         Step-size derivative

where

• Iteration is the iteration number.

• Func-count is the number of function evaluations.

• f(x) is the current function value.

• Step-size is the step size in the current search direction.

• Directional derivative is the gradient of the function along the search
direction.

For fsolve, lsqnonlin, and lsqcurvefit the headings are

Directional 
Iteration  Func-count Residual Step-size derivative Lambda

where Iteration, Func-count, Step-size, and Directional derivative are
the same as for fminunc, and

• Residual is the residual (sum-of-squares) of the function.

• Lambda is the value defined in the ‘‘Least Squares Optimization’’ section
of the Introduction to Algorithms chapter. (This value is printed when the
Levenberg-Marquardt method is used and omitted when the Gauss-Newton
method is used.)

For fmincon and fseminf the headings are

max Directional 
Iter F-count f(x) constraint Step-size derivative Procedure 

where

• Iter is the iteration number.

• F-count is the number of function evaluations.

• f(x) is the current function value.

• max constraint is the maximum constraint violation.

• Step-size is the step size in the search direction.

λk
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• Directional derivative is the gradient of the function along the search
direction.

• Procedures are messages about the Hessian update and QP subproblem.

The Procedures messages are discussed in the ‘‘Updating the Hessian Matrix’’
section of the Introduction to Algorithms chapter.

For fgoalattain and fminimax, the headings are the same as for fmincon
except f(x) and max constraint are combined into Max{F,constraints}
which gives the maximum goal violation or constraint violation for
fgoalattain, and the maximum function value or constraint violation for
fminimax.

Output Headings: Large-Scale Algorithms
For fminunc, the column headings are

Norm of First-order
Iteration f(x) step optimality CG-iterations

where

• Iteration is the iteration number.

• f(x) is the current function value.

• Norm of step is the norm of the current step-size.

• First-order Optimality is the infinity norm of the current gradient.

• CG-iterations is the number of iterations taken by PCG (see
“Preconditioned Conjugate Gradients” in Chapter 3) at the current
(optimization) iteration.

For lsqnonlin, lsqcurvefit, and fsolve the column headings are

Norm of First-order 
Iteration  Func-count f(x) step optimality CG-iterations

where

• Iteration is the iteration number.

• Func-count is the number of function evaluations.

• f(x) is the sum-of-the-squares of the current function values.

• Norm of step is the norm of the current step-size.
0
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• First-order optimality is a measure of first-order optimality. For bound
constrained problems, the first-order optimality is the infinity norm of v.*g,
where v is defined as in “Box Constraints” in Chapter 3 and g is the gradient.
For unconstrained problems, it is the infinity norm of the current gradient.

• CG-iterations is the number of iterations taken by PCG (see
“Preconditioned Conjugate Gradients” in Chapter 3) at the current
(optimization) iteration.

For fmincon, the column headings are

Norm of First-order
Iteration f(x) step optimality CG-iterations

where

• Iteration is the iteration number.

• f(x) is the current function value.

• Norm of step is the norm of the current step-size.

• First-order optimality is a measure of first-order optimality. For bound
constrained problems, the first-order optimality is the infinity norm of v.*g,
where v is defined as in “Box Constraints” in Chapter 3 and g is the gradient.
For equality constrained problems, it is the infinity norm of the projected
gradient. (The projected gradient is the gradient projected into the nullspace
of Aeq.)

• CG-iterations is the number of iterations taken by PCG (see
“Preconditioned Conjugate Gradients” in Chapter 3) at the current
(optimization) iteration.

For linprog the column headings are

Residuals:   Primal     Dual     Upper    Duality     Total
               Infeas    Infeas    Bounds     Gap        Rel
               A*x—b   A'*y+z—w—f {x}+s—ub  x'*z+s'*w   Error

where

• Primal Infeas A*x-b is the norm of the residual A*x — b.

• Dual Infeas A'*y+z—w—f is the norm of the residual A'*y+z—w—f (where w is
all zero if there are no finite upper bounds).
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• Upper Bounds x'*z+s'*w is the norm of the residual
spones(s).*x+s—ub (which is defined to be zero if all variables are
unbounded above). This column is not printed if no finite upper bounds exist.

• Duality Gap x'*z+s'*w is the duality gap (see “Large-Scale Linear
Programming” in Chapter 3) between the primal objective and the dual
objective. s and w only appear in this equation if there are finite upper
bounds.

• Total Rel Error is the total relative error described at the end of the “Main
Algorithm” subsection of the section “Large-Scale Linear Programming” in
Chapter 3.
2
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Optimization of Inline Objects Instead of M-Files
The routines in the Optimization Toolbox also perform optimization on inline
objects, avoiding the need to write M-files to define functions.

To represent a mathematical function at the command line, create an inline
object from a string expression. For example, you can create an inline object of
the humps function (use the command type humps to see the M-file function
humps.m):

f = inline('1./((x–0.3).^2 + 0.01) + 1./((x–0.9).^2 + 0.04)–6');

You can then evaluate f at 2.0:

f(2.0)
ans =

–4.8552

And you can pass f to an optimization routine to minimize it:

x = fminbnd(f, 3, 4)

You can also create functions of more than one argument with inline by
specifying the names of the input arguments along with the string expression.
For example, to use lsqcurvefit, you need a function that takes two input
arguments, x and xdata:

f= inline('sin(x).*xdata +(x.^2).*cos(xdata)','x','xdata')
x = pi; xdata = pi*[4;2;3];
f(x, xdata)
ans =
  9.8696e+000
  9.8696e+000
 —9.8696e+000

and then call lsqcurvefit:

% assume ydata exists
x = lsqcurvefit(f,x,xdata,ydata)

Other examples using this technique follow.

A matrix equation

x = fsolve(inline('x∗x∗x–[1,2;3,4]'),ones(2,2))
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A nonlinear least squares problem

x = lsqnonlin(inline('x∗x–[3 5;9 10]'),eye(2,2))

Finally, another example using fgoalattainwhere the function has additional
arguments to pass to the optimization routine. For example, if the function to
be minimized has additional arguments A, B, and C,

fun = inline('sort(eig(A+B*x*C))','x','A','B','C');
x = fgoalattain(fun,—ones(2,2),[–5,–3,–1],[5, 3, 1],...
[ ],[ ],[ ],[ ],–4*ones(2),4*ones(2),[ ],[ ],A,B,C);

solves the problem detailed in Chapter 4 for fgoalattain.
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Practicalities
Optimization problems can take many iterations to converge and can be
sensitive to numerical problems such as truncation and round-off error in the
calculation of finite-difference gradients. Most optimization problems benefit
from good starting guesses. This improves the execution efficiency and can help
locate the global minimum instead of a local minimum.

Advanced problems are best solved by an evolutionary approach whereby a
problem with a smaller number of independent variables is solved first.
Solutions from lower order problems can generally be used as starting points
for higher order problems by using an appropriate mapping.

The use of simpler cost functions and less stringent termination criteria in the
early stages of an optimization problem can also reduce computation time.
Such an approach often produces superior results by avoiding local minima.

The Optimization Toolbox functions can be applied to a large variety of
problems. Used with a little “conventional wisdom,” many of the limitations
associated with optimization techniques can be overcome. Additionally,
problems that are not typically in the standard form can be handled by using
an appropriate transformation. Below is a list of typical problems and
recommendations for dealing with them:

Problem
The solution does not appear to be a global minimum.

Recommendation
There is no guarantee that you have a global minimum unless your problem is
continuous and has only one minimum. Starting the optimization from a
number of different starting points may help to locate the global minimum or
verify that there is only one minimum. Use different methods, where possible,
to verify results.

Problem
The fminunc function produces warning messages and seems to exhibit slow
convergence near the solution.
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Recommendation
If you are not supplying analytically determined gradients and the termination
criteria are stringent, fminunc often exhibits slow convergence near the
solution due to truncation error in the gradient calculation. Relaxing the
termination criteria produces faster, although less accurate, solutions. For the
medium-scale algorithm, another option is adjusting the finite-difference
perturbation levels, DiffMinChange and DiffMaxChange, which may increase
the accuracy of gradient calculations.

Problem
Sometimes an optimization problem has values of x for which it is impossible
to evaluate the objective function fun or the nonlinear constraints nonlcon.

Recommendation
Place bounds on the independent variables or make a penalty function to give
a large positive value to f and g when infeasibility is encountered. For gradient
calculation the penalty function should be smooth and continuous.

Problem
The function that is being minimized has discontinuities.

Recommendation
The derivation of the underlying method is based upon functions with
continuous first and second derivatives. Some success may be achieved for
some classes of discontinuities when they do not occur near solution points.
One option is to smooth the function. For example, the objective function might
include a call to an interpolation function to do the smoothing.

Or, for the medium-scale algorithms, the finite-difference parameters may be
adjusted in order to jump over small discontinuities. The variables
DiffMinChange and DiffMaxChange control the perturbation levels for x used
in the calculation of finite-difference gradients. The perturbation,∆ x, is always
in the range

DiffMinChange < Dx < DiffMaxChange

Problem
Warning messages are displayed.
6
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Recommendation
This sometimes occurs when termination criteria are overly stringent, or when
the problem is particularly sensitive to changes in the independent variables.
This usually indicates truncation or round-off errors in the finite-difference
gradient calculation, or problems in the polynomial interpolation routines.
These warnings can usually be ignored because the routines continue to make
steps toward the solution point; however, they are often an indication that
convergence will take longer than normal. Scaling can sometimes improve the
sensitivity of a problem.

Problem
The independent variables, x, only can take on discrete values, for example,
integers.

Recommendation
This type of problem occurs commonly when, for example, the variables are the
coefficients of a filter that are realized using finite-precision arithmetic or
when the independent variables represent materials that are manufactured
only in standard amounts.

Although the Optimization Toolbox functions are not explicitly set up to solve
discrete problems, some discrete problems can be solved by first solving an
equivalent continuous problem. Discrete variables can be progressively
eliminated from the independent variables, which are free to vary.

Eliminate a discrete variable by rounding it up or down to the nearest best
discrete value. After eliminating a discrete variable, solve a reduced order
problem for the remaining free variables. Having found the solution to the
reduced order problem, eliminate another discrete variable and repeat the
cycle until all the discrete variables have been eliminated.

dfildemo is a demonstration routine that shows how filters with fixed precision
coefficients can be designed using this technique.

Problem
The minimization routine appears to enter an infinite loop or returns a solution
that does not satisfy the problem constraints.
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Recommendation
Your objective, constraint or gradient functions may be returning Inf, NaN, or
complex values. The minimization routines expect only real numbers to be
returned. Any other values may cause unexpected results. Insert some
checking code into the user-supplied functions to verify that only real numbers
are returned (use the function isfinite).

Problem
You do not get the convergence you expect from the lsqnonlin routine.

Recommendation
You may be forming the sum of squares explicitly and returning a scalar value.
lsqnonlin expects a vector (or matrix) of function values that are squared and
summed internally.
8
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Converting Your Code to Version 2.0 Syntax
Most of the function names and calling sequences have changed in Version 2 to
accommodate new functionality and to clarify the roles of the input and output
variables.

As a result, if you want to use the new versions of these functions, you need to
modify any code that currently uses the old function names and calling
sequences.

This table lists the functions provided by the toolbox and indicates the
functions whose names have changed in Version 2.

Old (Version 1.5) Name New (Version 2) Name

attgoal fgoalattain

conls lsqlin

constr fmincon

curvefit lsqcurvefit

fmin fminbnd

fmins fminsearch

fminu fminunc

fsolve fsolve (name unchanged)

fzero fzero (name unchanged)

leastsq lsqnonlin

minimax fminimax

nnls lsqnonneg

lp linprog

qp quadprog

seminf fseminf
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This section explains the reasons for the new calling sequences and explains
how to convert your code. In addition, it provides a detailed example of
rewriting a call to the constr function to call the new fmincon function instead.

In addition to the information in this section, consult the M-file help for the
new functions for more information about the arguments they take. For
example, to see the help for fmincon, type:

help fmincon

Using optimset and optimget
The optimset function replaces foptions for overriding default parameter
settings. See “Changing the Default Settings” in Chapter 1 for more
information on using optimset and optimget.

New Calling Sequences
Version 2 of the toolbox makes these changes in the calling sequences:

• Equality constraints and inequality constraints are now supplied as
separate input arguments.

• Linear constraints and nonlinear constraints are now supplied as separate
input arguments.

• The gradient of the objective is computed in the same function as the
objective, rather than in a separate function, in order to provide more
efficient computation (because the gradient and objective often share similar
computations). Similarly, the gradient of the nonlinear constraints is
computed by the (now separate) nonlinear constraint function.

• The Hessian matrix can be provided by the objective function. (This matrix
is used only by the new large-scale algorithms.)

• Flags are required to indicate when extra information is available:

- OPTIONS.GradObj = 'on' indicates the user-supplied gradient of the
objective function is available.

- OPTIONS.GradConstr = 'on' indicates the user-supplied gradient of the
constraints is available.

- OPTIONS.Hessian = 'on' indicates the user-supplied Hessian of the
objective function is available.
0
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• Each function takes an OPTIONS structure to adjust parameters to the
optimization functions (see optimset, optimget).

• The new default output gives information upon termination (the old default
was no output, the new default is OPTIONS.display = 'final').

• Each function returns an EXITFLAG that denotes the termination state.

• The default uses the new large-scale methods when possible. If you want to
use the older algorithms (referred to as medium-scale algorithms in other
parts of this User’s Guide), set OPTIONS.LargeScale = 'off'.

Algorithm terminating conditions have been fine tuned. The stopping
conditions relating to TolX and TolFun for the large-scale and medium-scale
code are joined using OR instead of AND for these functions: fgoalattain,
fmincon, fminimax, fminunc, fseminf, fsolve, and lsqnonlin. As a result, you
may need to specify stricter tolerances; the defaults reflect this change.

Each function now has an OUTPUT structure that contains information about
the problem solution relevant to that function.

The LAMBDA is now a structure where each field is the Lagrange multipliers for
a type of constraint. For more information, see the individual functions entries
in Chapter 4.

The sections below describe how to convert from the old function names and
calling sequences to the new ones. The calls shown are the most general cases,
involving all possible input and output arguments. Note that many of these
arguments are optional; see the online help for these functions for more
information.

Converting from attgoal to fgoalattain
In Version 1.5, you used this call to attgoal:

OPTIONS = foptions;
[X,OPTIONS] = attgoal('FUN',x0,GOAL, WEIGHT, OPTIONS, VLB, VUB,

'GRADFUN', P1, P2,...);

with [F] = FUN(X,P1,...) and [DF] = GRADFUN(X,P1,...).
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In Version 2, you call fgoalattain like this:

OPTIONS = optimset('fgoalattain');
[X,FVAL,ATTAINFACTOR,EXITFLAG,OUTPUT,LAMBDA] =

fgoalattain('FUN',x0,GOAL,WEIGHT,A,B,Aeq,Beq,VLB,VUB,
'NONLCON',OPTIONS,P1,P2,...);

with [F,DF] = FUN(X,P1,P2,...) and NONLCON = [].

The fgoalattain function now allows nonlinear constraints, so you can now
define:

[Cineq,Ceq,DCineq,DCeq] = NONLCON(X,P1,...)

Converting from conls to lsqlin
In Version 1.5, you used this call to conls:

[X,LAMBDA,HOW] = conls(A,b,C,d,VLB,VUB,X0,N,DISPLAY);

In Version 2, convert the input arguments to the correct form for lsqlin by
separating the equality and inequality constraints:

Ceq = C(1:N,:);
deq = d(1:N);
C = C(N+1:end,:); 
d = d(N+1:end,:);

Now call lsqlin like this:

OPTIONS = optimset('Display','final');
[X,RESNORM,RESIDUAL,EXITFLAG,OUTPUT,LAMBDA] = 

lsqlin(A,b,C,d,Ceq,deq,VLB,VUB,X0,OPTIONS);

Converting from constr to fmincon
In Version 1.5, you used this call to constr:

[X,OPTIONS,LAMBDA,HESS] = 
constr('FUN',x0,OPTIONS,VLB,VUB,'GRADFUN',P1,P2,...);

with [F,C] = FUN(X,P1,...) and [G,DC] = GRADFUN(X,P1,...).

In Version 2, replace FUN and GRADFUN with two new functions:
2
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• OBJFUN, which returns the objective function, the gradient (first derivative)
of this function, and its Hessian matrix (second derivative):
[F,G,H] = OBJFUN(X,P1,...)

• NONLCON, which returns the functions for the nonlinear constraints (both
inequality and equality constraints) and their gradients:
[C,Ceq,DC,DCeq] = NONLCON(X,P1,...)

Now call fmincon like this:

% OBJFUN supplies the objective gradient and Hessian;
% NONLCON supplies the constraint gradient.
OPTIONS =

optimset('GradObj','on','GradConstr','on','Hessian','on');
[X,FVAL,EXITFLAG,OUTPUT,LAMBDA,GRAD,HESSIAN] =

fmincon('OBJFUN',x0,A,B,Aeq,Beq,VLB,VUB,'NONLCON',OPTIONS,
P1,P2,...);

See “Example of Converting from constr to fmincon” for a detailed example of
converting from constr to fmincon.

Converting from curvefit to lsqcurvefit
In Version 1.5, you used this call to curvefit:

[X,OPTIONS,FVAL,JACOBIAN] = 
curvefit('FUN',x0,XDATA,YDATA,OPTIONS,'GRADFUN',P1,P2,...);

with F = FUN(X,P1,...) and G = GRADFUN(X,P1,...).

In Version 2, replace FUN and GRADFUN with a single function that returns both
F and G (the objective function and the gradient):

[F,G] = OBJFUN(X,P1,...)

Now call lsqcurvefit like this:

OPTIONS = optimset('GradObj','on'); % Gradient is supplied
VLB = []; VUB = []; % New arguments not in curvefit
[X,RESNORM,F,EXITFLAG,OUTPUT,LAMBDA,JACOB] =

lsqcurvefit('OBJFUN',x0,XDATA,YDATA,VLB,VUB,OPTIONS,
P1,P2,...);
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If you have an existing FUN and GRADFUN that you do not want to rewrite, you
can pass them both to lsqcurvefit by placing them in a cell array:

OPTIONS = optimset('GradObj','on'); % Gradient is supplied
VLB = []; VUB = []; % New arguments not in curvefit
[X,RESNORM,F,EXITFLAG,OUTPUT,LAMBDA,JACOB] =

lsqcurvefit({'FUN','GRADFUN'},x0,XDATA,YDATA,VLB,VUB,
OPTIONS,P1,P2,...);

Converting from fmin to fminbnd
In Version 1.5, you used this call to fmin:

[X,OPTIONS] = fmin('FUN',x1,x2,OPTIONS,P1,P2,...);

In Version 2, you call fminbnd like this:

[X,FVAL,EXITFLAG,OUTPUT] = fminbnd(FUN,x1,x2,OPTIONS,P1,P2,...);

Converting from fmins to fminsearch
In Version 1.5, you used this call to fmins:

[X,OPTIONS] = fmins('FUN',x0,OPTIONS,[],P1,P2,...);

In Version 2, you call fminsearch like this:

[X,FVAL,EXITFLAG,OUTPUT] = fminsearch(FUN,x0,OPTIONS,P1,P2,...);

Converting from fminu to fminunc
In Version 1.5, you used this call to fminu:

[X,OPTIONS] = fminu('FUN',x0,OPTIONS,'GRADFUN',P1,P2,...);

with F = FUN(X,P1, ...) and G = GRADFUN(X,P1, ...).

In Version 2, replace FUN and GRADFUN with a single function that returns both
F and G (the objective function and the gradient):

[F,G] = OBJFUN(X,P1, ...)

(This function can also return the Hessian matrix as a third output argument.)
4
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Now call fminunc like this:

OPTIONS = optimset('GradObj','on'); % Gradient is supplied
[X,FVAL,EXITFLAG,OUTPUT,GRAD,HESSIAN] = 

fminunc('OBJFUN',x0,OPTIONS,P1,P2,...);

If you have an existing FUN and GRADFUN that you do not want to rewrite, you
can pass them both to fminunc by placing them in a cell array:

OPTIONS = optimset('GradObj','on'); % Gradient is supplied
[X,FVAL,EXITFLAG,OUTPUT,GRAD,HESSIAN] = 

fminunc({'FUN','GRADFUN'},x0,OPTIONS,P1,P2,...);

Converting to the new form of fsolve
In Version 1.5, you used this call to fsolve:

[X,OPTIONS] = 
fsolve('FUN',x0,XDATA,YDATA,OPTIONS,'GRADFUN',P1,P2,...);

with F = FUN(X,P1,...) and G = GRADFUN(X,P1,...).

In Version 2, replace FUN and GRADFUN with a single function that returns both
F and G (the objective function and the gradient):

[F,G] = OBJFUN(X,P1, ...)

Now call fsolve like this:

OPTIONS = optimset('GradObj','on'); % Gradient is supplied
[X,FVAL,EXITFLAG,OUTPUT,JACOBIAN] = 

fsolve('OBJFUN',x0,OPTIONS,P1,P2,...);

If you have an existing FUN and GRADFUN that you do not want to rewrite, you
can pass them both to fsolve by placing them in a cell array:

OPTIONS = optimset('GradObj','on'); % Gradient is supplied
[X,FVAL,EXITFLAG,OUTPUT,JACOBIAN] = 

fsolve({'FUN','GRADFUN'},x0,OPTIONS,P1,P2,...);

Converting to the new form of fzero
In Version 1.5, you used this call to fzero:

X = fzero(F,X,TOL,TRACE,P1,P2,...);
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In Version 2, replace the TRACE and TOL arguments with:

if TRACE == 0,
val = 'none';

elseif TRACE == 1
val = 'iter';

end
OPTIONS = optimset('Display',val,'TolX',TOL);

Now call fzero like this:

[X,FVAL,EXITFLAG,OUTPUT] = fzero(F,X,OPTIONS,P1,P2,...);

Converting from leastsq to lsqnonlin
In Version 1.5, you used this call to leastsq:

[X,OPTIONS,FVAL,JACOBIAN] = 
leastsq('FUN',x0,OPTIONS,'GRADFUN',P1,P2,...);

with F = FUN(X,P1,...) and G = GRADFUN(X,P1, ...).

In Version 2, replace FUN and GRADFUN with a single function that returns both
F and G (the objective function and the gradient):

[F,G] = OBJFUN(X,P1, ...)

Now call lsqnonlin like this:

OPTIONS = optimset('GradObj','on'); % Gradient is supplied
VLB = []; VUB = []; % New arguments not in leastsq
[X,RESNORM,F,EXITFLAG,OUTPUT,LAMBDA,JACOBIAN] = 

lsqnonlin('OBJFUN',x0,VLB,VUB,OPTIONS,P1,P2,...);

If you have an existing FUN and GRADFUN that you do not want to rewrite, you
can pass them both to lsqnonlin by placing them in a cell array:

OPTIONS = optimset('GradObj','on'); % Gradient is supplied
VLB = []; VUB = []; % New arguments not in leastsq
[X,RESNORM,F,EXITFLAG,OUTPUT,LAMBDA,JACOBIAN] = 

lsqnonlin({'FUN','GRADFUN'},x0,VLB,VUB,OPTIONS,P1,P2,...);
6
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Converting from lp to linprog
In Version 1.5, you used this call to lp:

[X,LAMBDA,HOW] = lp(f,A,b,VLB,VUB,X0,N,DISPLAY);

In Version 2, convert the input arguments to the correct form for linprog by
separating the equality and inequality constraints:

Aeq = A(1:N,:);
beq = b(1:N);
A = A(N+1:end,:); 
b = b(N+1:end,:);
if DISPLAY

val = 'final';
else

val = 'none';
end
OPTIONS = optimset('Display',val);

Now call linprog like this:

[X,FVAL,EXITFLAG,OUTPUT,LAMBDA] = 
linprog(f,A,b,Aeq,beq,VLB,VUB,X0,OPTIONS);

Converting from minimax to fminimax
In Version 1.5, you used this call to minimax:

[X,OPTIONS] =
minimax('FUN',x0,OPTIONS,VLB,VUB,'GRADFUN',P1,P2,...);

with F = FUN(X,P1,...) and G = GRADFUN(X,P1,...).

In Version 2, you call fminimax like this:

OPTIONS = optimset('fminimax');
[X,FVAL,MAXFVAL,EXITFLAG,OUTPUT,LAMBDA] =

fminimax('OBJFUN',x0,A,B,Aeq,Beq,VLB,VUB,'NONLCON',OPTIONS,
P1,P2,...);

with [F,DF] = OBJFUN(X,P1,...)

and [Cineq,Ceq,DCineq,DCeq] = NONLCON(X,P1,...).
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Converting from nnls to lsqnonneg
In Version 1.5, you used this call to nnls:

[X,LAMBDA] = nnls(A,b,tol);

In Version 2, replace the tol argument with:

OPTIONS = optimset('Display','none','TolX',tol);

Now call lsqnonneg like this:

[X,RESNORM,RESIDUAL,EXITFLAG,OUTPUT,LAMBDA] = 
lsqnonneg(A,b,X0,OPTIONS);

Converting from qp to quadprog
In Version 1.5, you used this call to qp:

[X,LAMBDA,HOW] = qp(H,f,A,b,VLB,VUB,X0,N,DISPLAY);

In Version 2, convert the input arguments to the correct form for quadprog by
separating the equality and inequality constraints:

Aeq = A(1:N,:);
beq = b(1:N);
A = A(N+1:end,:); 
b = b(N+1:end,:);
if DISPLAY

val = 'final';
else

val = 'none';
end
OPTIONS = optimset('Display',val);

Now call quadprog like this:

[X,FVAL,EXITFLAG,OUTPUT,LAMBDA] = 
quadprog(H,f,A,b,Aeq,beq,VLB,VUB,X0,OPTIONS);

Converting from seminf to fseminf
In Version 1.5, you used this call to seminf:

[X,OPTIONS] = seminf('FUN',N,x0,OPTIONS,VLB,VUB,P1,P2,...);

with [F,C,PHI1,PHI2,...,PHIN,S] = FUN(X,S,P1,P2,...).
8
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In Version 2, call fseminf like this:

[X,FVAL,EXITFLAG,OUTPUT,LAMBDA] =
fseminf('OBJFUN',x0,N,'NONLCON',A,B,Aeq,Beq,VLB,VUB,OPTIONS,
P1,P2,...);

with F = OBJFUN(X,P1,...)

and [Cineq,Ceq,PHI1,PHI2,...,PHIN,S] = NONLCON(X,S,P1,...).
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Example of Converting from constr to fmincon

Old Call to constr
OPTIONS = foptions;
OPTIONS(13) = 2;  % two equality constraints
OPTIONS(1) = 1;
OPTIONS(9) = 1;
A1 = [ 1 4 –3]; b1 = 2;
A2 = [ 2 5 0]; b2 = 9;
x0 = [1; .5; .8];
LB = []; UB = [];
[X,OPTIONS,LAMBDA,HESS] = ...
   constr('myfuncon',x0,OPTIONS,LB,UB,'mygradcon',A1,b1,A2,b2);

% myfuncon.m
[F, C] = myfuncon(x,A1,b1,A2,b2)
F = x(1) + 0.0009*x(2)^3 + sin(x(3));

C(1,1) = A1*x–b;             % equality linear constraint
C(2,1) = 3*x(1)^2–1;         % equality nonlinear constraint

C(3,1) = A2*x–b2;            % inequality linear constraint
C(4,1) = 7*sin(x(2))–1;      % inequality nonlinear constraint

% mygradcon.m
[G, DC] = mygradcon(x,alpha)
G = [1;                       % gradient of the objective
     3*0.0009*x(2)^2;
     cos(x(3))];

DC(:,1) = A1';                % gradient of the constraints
DC(:,2) = [6*x(1); 0; 0];
DC(:,3) = A2';
DC(:,4) = [0; 7*cos(x(2)); 0];
0
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New Call to fmincon
OPTIONS = optimset(...

'Display', 'iter', ...
'GradCheck', 'on', ... % Check gradients.
'GradObj', 'on', ... % Gradient of objective is provided.
'GradConstr', 'on'); % Gradient of constraints is provided.

A1 = [ 1 4 –3]; b1 = 2;  % linear equalities
A2 = [ 2 5 0]; b2 = 9;   % linear inequalities

x0 = [1; .5; .8];
LB = []; UB = [];
[X,FVAL,EXITFLAG,OUTPUT,LAMBDA,GRAD,HESSIAN] = ...
   fmincon('myfun',x0,A2,b2,A1,b1,LB,UB,'mycon',OPTIONS);

% myfun.m
function [F,G] = myfun(x)
F = x(1) + 0.0009*x(2)^3 + sin(x(3));
G = [1; 
     3*0.0009*x(2)^2;
     cos(x(3))];

% mycon.m
function [C,Ceq,DC,DCeq]= mycon(x)
Ceq(1,1) = 3*x(1)^2–1;         % equality nonlinear constraint
C(1,1) = 7*sin(x(2))–1;        % inequality nonlinear constraint
DCeq(:,1) = [6*x(1); 0; 0];    % gradient of equality 
                               % nonlinear constraint
DC(:,1) = [0; 7*cos(x(2)); 0]; % gradient of inequality 
                               % nonlinear constraint
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Parametric Optimization
This chapter provides an introduction to the different optimization problem
formulations and describes the “medium-scale” algorithms used in the
Optimization Toolbox. “Medium-scale” is not a standard term and is used here
only to differentiate these algorithms from the large-scale algorithms described
in the Large-scale Algorithms chapter.

Parametric optimization is used to find a set of design parameters,
, that can in some way be defined as optimal. In a simple

case this may be the minimization or maximization of some system
characteristic that is dependent on x. In a more advanced formulation the
objective function, f(x), to be minimized or maximized, may be subject to
constraints in the form of equality constraints, ,
inequality constraints, , and/or parameter bounds,

.

A General Problem (GP) description is stated as

(2-1)

where x is the vector of design parameters, ( ), f(x) is the objective
function that returns a scalar value ( ), and the vector function
G(x) returns the values of the equality and inequality constraints evaluated at
x ( ).

An efficient and accurate solution to this problem is not only dependent on the
size of the problem in terms of the number of constraints and design variables
but also on characteristics of the objective function and constraints. When both
the objective function and the constraints are linear functions of the design
variable, the problem is known as a Linear Programming problem (LP).
Quadratic Programming (QP) concerns the minimization or maximization of a
quadratic objective function that is linearly constrained. For both the LP and
QP problems, reliable solution procedures are readily available. More difficult
to solve is the Nonlinear Programming (NP) problem in which the objective
function and constraints may be nonlinear functions of the design variables. A
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Parametric Optimization
solution of the NP problem generally requires an iterative procedure to
establish a direction of search at each major iteration. This is usually achieved
by the solution of an LP, a QP, or an unconstrained sub-problem.
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Unconstrained Optimization
Although a wide spectrum of methods exists for unconstrained optimization,
methods can be broadly categorized in terms of the derivative information that
is, or is not, used. Search methods that use only function evaluations (e.g., the
simplex search of Nelder and Mead [33]) are most suitable for problems that
are very nonlinear or have a number of discontinuities. Gradient methods are
generally more efficient when the function to be minimized is continuous in its
first derivative. Higher order methods, such as Newton’s method, are only
really suitable when the second order information is readily and easily
calculated since calculation of second order information, using numerical
differentiation, is computationally expensive.

Gradient methods use information about the slope of the function to dictate a
direction of search where the minimum is thought to lie. The simplest of these
is the method of steepest descent in which a search is performed in a
direction, , (where is the gradient of the objective function). This
method is very inefficient when the function to be minimized has long narrow
valleys as, for example, is the case for Rosenbrock’s function

(2-2)

The minimum of this function is at where . A contour map
of this function is shown in Figure , along with the solution path to the
minimum for a steepest descent implementation starting at the point [–1.9,2].
The optimization was terminated after 1000 iterations, still a considerable
distance from the minimum. The black areas are where the method is
continually zig-zagging from one side of the valley to another. Note that
towards the center of the plot, a number of larger steps are taken when a point
lands exactly at the center of the valley.
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Unconstrained Optimization
Figure 2-1:  Steepest Descent Method on Rosenbrock’s Function (Eq. 2-2)

This type of function (Eq. 2-2), also known as the banana function, is notorious
in unconstrained examples because of the way the curvature bends around the
origin. Eq. 2-2 is used throughout this section to illustrate the use of a variety
of optimization techniques. The contours have been plotted in exponential
increments due to the steepness of the slope surrounding the U-shaped valley.

Quasi-Newton Methods
Of the methods that use gradient information, the most favored are the
quasi-Newton methods. These methods build up curvature information at each
iteration to formulate a quadratic model problem of the form

(2-3)
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where the Hessian matrix, H, is a positive definite symmetric matrix, c is a
constant vector, and b is a constant. The optimal solution for this problem
occurs when the partial derivatives of x go to zero, i.e.,

(2-4)

The optimal solution point, , can be written as

(2-5)

Newton-type methods (as opposed to quasi-Newton methods) calculate H
directly and proceed in a direction of descent using a line search method to
locate the minimum after a number of iterations. Calculating H numerically
involves a large amount of computation. Quasi-Newton methods avoid this by
using the observed behavior of f(x) and to build up curvature
information to make an approximation to H using an appropriate updating
technique.

A large number of Hessian updating methods have been developed. Generally,
the formula of Broyden [3], Fletcher [4], Goldfarb [5], and Shanno [6] (BFGS)
is thought to be the most effective for use in a general purpose method.

The formula is given by

BFGS

(2-6)

where

As a starting point, can be set to any symmetric positive definite matrix, for
example, the identity matrix I. To avoid the inversion of the Hessian H, you can
derive an updating method in which the direct inversion of H is avoided by
using a formula that makes an approximation of the inverse Hessian at
each update. A well known procedure is the DFP formula of Davidon [7],
Fletcher, and Powell [8]. This uses the same formula as the above BFGS
method (Eq. ) except that is substituted for .
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The gradient information is either supplied through analytically calculated
gradients, or derived by partial derivatives using a numerical differentiation
method via finite differences. This involves perturbing each of the design
variables, x, in turn and calculating the rate of change in the objective function.

At each major iteration, k, a line search is performed in the direction

(2-7)

The quasi-Newton method is illustrated by the solution path on Rosenbrock’s
function (Eq. 2-2) in Figure 2-2. The method is able to follow the shape of the
valley and converges to the minimum after 140 function evaluations using only
finite difference gradients.

Figure 2-2:  BFGS Method on Rosenbrock’s Function
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Line Search
Most unconstrained and constrained methods use the solution of a sub-problem
to yield a search direction in which the solution is estimated to lie. The
minimum along the line formed from this search direction is generally
approximated using a search procedure (e.g., Fibonacci, Golden Section) or by
a polynomial method involving interpolation or extrapolation (e.g., quadratic,
cubic). Polynomial methods approximate a number of points with a univariate
polynomial whose minimum can be calculated easily. Interpolation refers to
the condition that the minimum is bracketed (i.e., the minimum lies in the area
spanned by the available points), whereas extrapolation refers to a minimum
located outside the range spanned by the available points. Extrapolation
methods are generally considered unreliable for estimating minima for
nonlinear functions. However, they are useful for estimating step length when
trying to bracket the minimum as shown in the “Line Search Procedures”
section. Polynomial interpolation methods are generally the most effective in
terms of efficiency when the function to be minimized is continuous. The
problem is to find a new iterate of the form

(2-8)

where denotes the current iterate, d the search direction obtained by an
appropriate method, and is a scalar step length parameter that is the
distance to the minimum.

Quadratic Interpolation
Quadratic interpolation involves a data fit to a univariate function of the form

(2-9)

where an extremum occurs at a step length of

(2-10)

This point may be a minimum or a maximum. It is a minimum when
interpolation is performed (i.e., using a bracketed minimum) or when a is
positive. Determination of coefficients, a and b, can be found using any
combination of three gradient or function evaluations. It may also be carried
out with just two gradient evaluations. The coefficients are determined
through the formulation and solution of a linear set of simultaneous equations.

xk 1+

xk 1+ xk α∗d+=

xk
α∗

mq α( ) aα2 bα c+ +=
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Unconstrained Optimization
Various simplifications in the solution of these equations can be achieved when
particular characteristics of the points are used. For example, the first point
can generally be taken as . Other simplifications can be achieved when
the points are evenly spaced. A general problem formula is as follows:

Given three unevenly spaced points and their associated function
values the minimum resulting from a second-order fit is
given by

Quadratic Interpolation

(2-11)

where

For interpolation to be performed, as opposed to extrapolation, the minimum
must be bracketed so that the points can be arranged to give

Cubic Interpolation
Cubic interpolation is useful when gradient information is readily available or
when more than three function evaluations have been calculated. It involves a
data fit to the univariate function

(2-12)

where the local extrema are roots of the quadratic equation

To find the minimum extremum, take the root that gives as positive.
Coefficients a and b can be determined using any combination of four gradient
or function evaluations, or alternatively, with just three gradient evaluations.

The coefficients are calculated by the formulation and solution of a linear set of
simultaneous equations. A general formula, given two points, , their

α 0=

x1 x2 x3,{ , }
f x1( ) f x2( ) f x3( ),{ , }

xk 1+
1
2---

β23f x1( ) β31f x2( ) β12f x3( )+ +

γ23f x1( ) γ31f x2( ) γ12f x3( )+ +
-------------------------------------------------------------------------------=

βij xi
2 xj

2–=

γij xi xj–=
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mc α( ) aα3 bα2 cα d+ + +=

3aα2 2bα c+ + 0=

6aα 2b+
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corresponding gradients with respect to x, , and associated
function values, is

(2-13)

where

f∇ x1( ) f∇ x2( ){ , }
f x1( ) f x2( ){ , }
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---------------------------------------------------------–=
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Quasi-Newton Implementation
Quasi-Newton Implementation 
A quasi-Newton algorithm is used in fminunc. The algorithm consists of two
phases:

• Determination of a direction of search

• Line search procedure

Implementation details of the two phases are discussed below.

Hessian Update
The direction of search is determined by a choice of either the BFGS (Eq. ) or
the DFP method given in the “Quasi-Newton Methods” section (set the options
parameter HessUpdate to 'dfp' to select the DFP method). The Hessian, H, is
always maintained to be positive definite so that the direction of search, d, is
always in a descent direction. This means that for some arbitrarily small step,

, in the direction, d, the objective function decreases in magnitude. Positive
definiteness of H is achieved by ensuring that H is initialized to be positive
definite and thereafter (from Eq. ) is always positive. The term is a
product of the line search step length parameter, and a combination of the
search direction, d, with past and present gradient evaluations,

(2-14)

The condition that is positive is always achieved by ensuring that a
sufficiently accurate line search is performed. This is because the search
direction, d, is a descent direction so that and are always
positive. Thus, the possible negative term can be made as small
in magnitude as required by increasing the accuracy of the line search.

Line Search Procedures
Two line search strategies are used depending on whether gradient
information is readily available or whether it must be calculated using a finite
difference method. When gradient information is available, the default is to use
a cubic polynomial method. When gradient information is not available, the
default is to use a mixed quadratic and cubic polynomial method.

α

qk
Tsk qk

Tsk
αk

qk
Tsk αk f xk 1+( )∇ Td f xk( )∇ Td–( )=

qk
Tsk

αk f xk( )∇ Td–
f xk 1+( )∇ Td
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Cubic Polynomial Method 
In the proposed cubic polynomial method, a gradient and a function evaluation
is made at every iteration, k. At each iteration an update is performed when a
new point is found, , which satisfies the condition that

(2-15)

At each iteration a step, , is attempted to form a new iterate of the form

(2-16)

If this step does not satisfy the condition (Eq. 2-15) then is reduced to form
a new step, . The usual method for this reduction is to use bisection (i.e.,
to continually halve the step length until a reduction is achieved in f(x).
However, this procedure is slow when compared to an approach that involves
using gradient and function evaluations together with cubic interpolation/
extrapolation methods to identify estimates of step length.

When a point is found that satisfies the condition (Eq. 2-15), an update is
performed if is positive. If it is not, then further cubic interpolations are
performed until the univariate gradient term is sufficiently small
so that is positive.

It is usual practice to reset to unity after every iteration. However, note that
the quadratic model (Eq. 2-3) is generally only a good one near to the solution
point. Therefore, , is modified at each major iteration to compensate for the
case when the approximation to the Hessian is monotonically increasing or
decreasing. To ensure that, as xk approaches the solution point, the procedure
reverts to a value of close to unity, the values of and
are used to estimate the closeness to the solution point and thus to control the
variation in .

After each update procedure, a step length is attempted, following which a
number of scenarios are possible. Consideration of all the possible cases is quite
complicated and so they are represented pictorially in Figure 2-3, where the
left-hand point on the graphs represents the point . The slope of the line
bisecting each point represents the slope of the univariate gradient, ,
which is always negative for the left-hand point. The right-hand point is the
point after a step of is taken in the direction d.
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Quasi-Newton Implementation
Figure 2-3:  Cubic Polynomial Line Search Procedures
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Cases 1 and 2 show the procedures performed when the value
is positive. Cases 3 and 4 show the procedures performed when 

the value is negative. The notation refers to the
smallest value of the set .

At each iteration a cubicly interpolated step length is calculated and then
used to adjust the step length parameter . Occasionally, for very
nonlinear functions may be negative, in which case is given a value of

. The methods for changing the step length have been refined over a period
of time by considering a large number of test problems.

Certain robustness measures have also been included so that, even in the case
when false gradient information is supplied, a reduction in f(x) can be achieved
by taking a negative step. This is done by setting when
falls below a certain threshold value (e.g., 1e–8). This is important when
extremely high precision is required if only finite difference gradients are
available.

Mixed Cubic/Quadratic Polynomial Method
The cubic interpolation/extrapolation method has proved successful for a large
number of optimization problems. However, when analytic derivatives are not
available, the evaluating finite difference gradients is computationally
expensive. Therefore, another interpolation/extrapolation method is
implemented so that gradients are not needed at every iteration. The approach
in these circumstances, when gradients are not readily available, is to use a
quadratic interpolation method. The minimum is generally bracketed using
some form of bisection method. This method, however, has the disadvantage
that all the available information about the function is not used. For instance,
a gradient calculation is always performed at each major iteration for the
Hessian update. Therefore, given three points that bracket the minimum, it is
possible to use cubic interpolation, which is likely to be more accurate than
using quadratic interpolation. Further efficiencies are possible if, instead of
using bisection to bracket the minimum, extrapolation methods similar to
those used in the cubic polynomial method are used.

Hence, the method that is used in fminunc, lsqnonlin, lsqcurvefit, and
fsolve is to find three points that bracket the minimum and to use cubic
interpolation to estimate the minimum at each line search. The estimation of
step length, at each minor iteration, j, is shown in Figure for a number of point
combinations. The left-hand point in each graph represents the function value

and univariate gradient obtained at the last update. The

f xk 1+( )∇ Td
f xk 1+( )∇ Td a b c,{ , }min

a b c,{ , }

αc
αk 1+

αc αc
2αk

αk 1+ αk 2⁄–= αk

f x1( ) f xk( )∇
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Quasi-Newton Implementation
right-hand points represent the points accumulated in the minor iterations of
the line search procedure.

The terms and refer to the minimum obtained from a respective
quadratic and cubic interpolation or extrapolation. For highly nonlinear
functions, and may be negative, in which case they are set to a value of

so that they are always maintained to be positive. Cases 1 and 2 use
quadratic interpolation with two points and one gradient to estimate a third
point that brackets the minimum. If this fails, cases 3 and 4 represent the
possibilities for changing the step length when at least three points are
available.

When the minimum is finally bracketed, cubic interpolation is achieved using
one gradient and three function evaluations. If the interpolated point is greater
than any of the three used for the interpolation, then it is replaced with the
point with the smallest function value. Following the line search procedure the
Hessian update procedure is performed as for the cubic polynomial line search
method.

.

αq αc

αc αq
2αk
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Figure 2-4:  Line Search Procedures with Only Gradient for the First Point
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Least Squares Optimization
Least Squares Optimization
The line search procedures used in conjunction with a quasi-Newton method
are used in the function fminunc. They are also used as part of a nonlinear least
squares (LS) optimization routines, lsqnonlin and lsqcurvefit. In the least
squares problem a function, f(x) is minimized that is a sum of squares.

LS

(2-17)

Problems of this type occur in a large number of practical applications
especially when fitting model functions to data, i.e., nonlinear parameter
estimation. They are also prevalent in control where you want the output,

to follow some continuous model trajectory, , for vector x and scalar
t. This problem can be expressed as

(2-18)

where and are scalar functions.

When the integral is discretized using a suitable quadrature formula, Eq. 2-18
can be formulated as a least squares problem

(2-19)

where and include the weights of the quadrature scheme. Note that in this
problem the vector F(x) is
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In problems of this kind the residual is likely to be small at the
optimum since it is general practice to set realistically achievable target
trajectories. Although the function in LS (Eq. 2-18) can be minimized using a
general unconstrained minimization technique as described in the
“Unconstrained Optimization” section, certain characteristics of the problem
can often be exploited to improve the iterative efficiency of the solution
procedure. The gradient and Hessian matrix of LS (Eq. 2-18) have a special
structure.

Denoting the Jacobian matrix of F(x) as J(x), the gradient vector of f(x)
as , the Hessian matrix of f(x) as , and the Hessian matrix of each

as , we have

(2-20)

where

The matrix Q(x) has the property that when the residual tends to zero
as approaches the solution, then Q(x) also tends to zero. Thus when
is small at the solution, a very effective method is to use the Gauss-Newton
direction as a basis for an optimization procedure.

Gauss-Newton Method
In the Gauss-Newton method, a search direction, , is obtained at each major
iteration, k, that is a solution of the linear least-squares problem

Gauss-Newton

(2-21)

The direction derived from this method is equivalent to the Newton direction
when the terms of Q(x) can be ignored. The search direction can be used as
part of a line search strategy to ensure that at each iteration the function f(x)
decreases.
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Least Squares Optimization
To consider the efficiencies that are possible with the Gauss-Newton method,
Figure shows the path to the minimum on Rosenbrock’s function (Eq. 2-2)
when posed as a least squares problem. The Gauss-Newton method converges
after only 48 function evaluations using finite difference gradients compared to
140 iterations using an unconstrained BFGS method.

The Gauss-Newton method often encounters problems when the second order
term Q(x) in Eq. 2-20 is significant. A method that overcomes this problem is
the Levenberg-Marquardt method.

Figure 2-5:  Gauss-Newton Method on Rosenbrock’s Function

Levenberg-Marquardt Method
The Levenberg-Marquardt [18,19] method uses a search direction that is a
solution of the linear set of equations

(2-22)

where the scalar controls both the magnitude and direction of . When
is zero, the direction is identical to that of the Gauss-Newton method. As

tends to infinity, tends towards a vector of zeros and a steepest descent
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direction. This implies that for some sufficiently large , the term
holds true. The term can therefore be controlled to

ensure descent even when second order terms, which restrict the efficiency of
the Gauss-Newton method, are encountered.

The Levenberg-Marquardt method therefore uses a search direction that is a
cross between the Gauss-Newton direction and the steepest descent. This is
illustrated in Figure 2-6 below. The solution for Rosenbrock’s function (Eq. 2-2)
converges after 90 function evaluations compared to 48 for the Gauss-Newton
method. The poorer efficiency is partly because the Gauss-Newton method is
generally more effective when the residual is zero at the solution. However,
such information is not always available beforehand, and occasional poorer
efficiency of the Levenberg-Marquardt method is compensated for by its
increased robustness.

Figure 2-6:  Levenberg-Marquardt Method on Rosenbrock’s Function
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Nonlinear Least Squares Implementation
Nonlinear Least Squares Implementation
For a general survey of nonlinear least squares methods see Dennis [21].
Specific details on the Levenberg-Marquardt method can be found in
Moré [20]. Both the Gauss-Newton method and the Levenberg-Marquardt
method are implemented in the Optimization Toolbox. Details of the
implementations are discussed below.

Gauss-Newton Implementation
The Gauss-Newton method is implemented using similar polynomial line
search strategies discussed for unconstrained optimization. In solving the
linear least squares problem (Prob. 2.18), exacerbation of the conditioning of
the equations is avoided by using the QR decomposition of and applying
the decomposition to (using the MATLAB \ operator). This is in contrast
to inverting the explicit matrix, , which can cause unnecessary
errors to occur.

Robustness measures are included in the method. These measures consist of
changing the algorithm to the Levenberg-Marquardt method when either the
step length goes below a threshold value (in this implementation 1e–15) or
when the condition number of is below 1e–10. The condition number is
a ratio of the largest singular value to the smallest.

Levenberg-Marquardt Implementation
The main difficulty in the implementation of the Levenberg-Marquardt
method is an effective strategy for controlling the size of at each iteration so
that it is efficient for a broad spectrum of problems. The method used in this
implementation is to estimate the relative nonlinearity of f(x) using a linear
predicted sum of squares and a cubicly interpolated estimate of the
minimum . In this way the size of is determined at each iteration.

The linear predicted sum of squares is calculated as

(2-23)

and the term is obtained by cubicly interpolating the points and
. A step length parameter α∗ is also obtained from this interpolation,

which is the estimated step to the minimum. If is greater than ,
then is reduced, otherwise it is increased. The justification for this is that
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the difference between and is a measure of the effectiveness of
the Gauss-Newton method and the linearity of the problem. This determines
whether to use a direction approaching the steepest descent direction or the
Gauss-Newton direction. The formulas for the reduction and increase in ,
which have been developed through consideration of a large number of test
problems, are shown in Figure 2-7 below.

Figure 2-7:  Updating 

Following the update of , a solution of Eq. 2-22 is used to obtain a search
direction, . A step length of unity is then taken in the direction , which is
followed by a line search procedure similar to that discussed for the
unconstrained implementation. The line search procedure ensures that

at each major iteration and the method is therefore a descent
method.

The implementation has been successfully tested on a large number of
nonlinear problems. It has proved to be more robust than the Gauss-Newton
method and iteratively more efficient than an unconstrained method. The
Levenberg-Marquardt algorithm is the default method used by lsqnonlin. The
Gauss-Newton method can be selected by setting the options parameter
LevenbergMarquardt to 'off'.
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Constrained Optimization
Constrained Optimization
In constrained optimization, the general aim is to transform the problem into
an easier subproblem that can then be solved and used as the basis of an
iterative process. A characteristic of a large class of early methods is the
translation of the constrained problem to a basic unconstrained problem by
using a penalty function for constraints, which are near or beyond the
constraint boundary. In this way the constrained problem is solved using a
sequence of parameterized unconstrained optimizations, which in the limit (of
the sequence) converge to the constrained problem. These methods are now
considered relatively inefficient and have been replaced by methods that have
focused on the solution of the Kuhn-Tucker (KT) equations. The KT equations
are necessary conditions for optimality for a constrained optimization problem.
If the problem is a so-called convex programming problem, that is, f(x) and

, are convex functions, then the KT equations are both
necessary and sufficient for a global solution point.

Referring to GP (Eq. 2-1), the Kuhn-Tucker equations can be stated as

 (2-24)

The first equation describes a canceling of the gradients between the objective
function and the active constraints at the solution point. For the gradients to
be canceled, Lagrange Multipliers ( ) are necessary to balance
the deviations in magnitude of the objective function and constraint gradients.
Since only active constraints are included in this canceling operation,
constraints that are not active must not be included in this operation and so
are given Lagrange multipliers equal to zero. This is stated implicitly in the
last two equations of Eq. 2-24.

The solution of the KT equations forms the basis to many nonlinear
programming algorithms. These algorithms attempt to compute directly the
Lagrange multipliers. Constrained quasi-Newton methods guarantee
superlinear convergence by accumulating second order information regarding
the KT equations using a quasi-Newton updating procedure. These methods

Gi x( ) i, 1 … m, ,=

f x∗( ) λi
∗ Gi x∗( )∇⋅

i 1=

m

∑+ 0=

Gi x∗( )∇ 0= i 1 … me, ,=

λi
∗ 0≥ i me 1 … m, ,+=

λi i, 1 …m,=
2-23



2 Introduction to Algorithms

2-2
are commonly referred to as Sequential Quadratic Programming (SQP)
methods since a QP sub-problem is solved at each major iteration (also known
as Iterative Quadratic Programming, Recursive Quadratic Programming, and
Constrained Variable Metric methods).

Sequential Quadratic Programming (SQP)
SQP methods represent state-of-the-art in nonlinear programming methods.
Schittowski [22], for example, has implemented and tested a version that out
performs every other tested method in terms of efficiency, accuracy, and
percentage of successful solutions, over a large number of test problems.

Based on the work of Biggs [9], Han [10], and Powell [11,12], the method allows
you to closely mimic Newton’s method for constrained optimization just as is
done for unconstrained optimization. At each major iteration an approximation
is made of the Hessian of the Lagrangian function using a quasi-Newton
updating method. This is then used to generate a QP sub-problem whose
solution is used to form a search direction for a line search procedure. An
overview of SQP is found in Fletcher [2], Gill et al. [1], Powell [13], and
Schittowski [14]. The general method, however, is stated here.

Given the problem description in GP (Eq. 2.1) the principal idea is the
formulation of a QP sub-problem based on a quadratic approximation of the
Lagrangian function.

(2-25)

Here Eq. 2.1 is simplified by assuming that bound constraints have been
expressed as inequality constraints. The QP sub-problem is obtained by
linearizing the nonlinear constraints.

QP Subproblem

(2-26)

L x λ,( ) f x( ) λi gi x( )⋅

i 1=

m

∑+=

1
2---dTHkd f xk( )∇ T+ d

d ℜn∈
minimize

gi xk( )∇ Td gi xk( )+ 0= i 1 …me,=

gi xk( )∇ Td gi xk( )+ 0≤ i me 1+ …m,=
4



Constrained Optimization
This sub-problem can be solved using any QP algorithm (see, for instance, the
“Quadratic Programming Solution” section). The solution is used to form a new
iterate

The step length parameter is determined by an appropriate line search
procedure so that a sufficient decrease in a merit function is obtained (see the
“Updating the Hessian Matrix” section). The matrix is a positive definite
approximation of the Hessian matrix of the Lagrangian function (Eq. 2-25).
can be updated by any of the quasi-Newton methods, although the BFGS
method (see the section “Updating the Hessian Matrix”) appears to be the most
popular.

A nonlinearly constrained problem can often be solved in fewer iterations than
an unconstrained problem using SQP. One of the reasons for this is that,
because of limits on the feasible area, the optimizer can make well-informed
decisions regarding directions of search and step length.

Consider Rosenbrock’s function (Eq. 2-2) with an additional nonlinear
inequality constraint, g(x)

(2-27)

This was solved by an SQP implementation in 96 iterations compared to 140
for the unconstrained case. Figure shows the path to the solution point

starting at .
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Figure 2-8:  SQP Method on Nonlinear Linearly Constrained Rosenbrock’s 
Function (Eq.2-2)
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SQP Implementation
SQP Implementation
The MATLAB SQP implementation consists of three main stages, which are
discussed briefly in the following sub-sections:

• Updating of the Hessian matrix of the Lagrangian function

• Quadratic programming problem solution

• Line search and merit function calculation

Updating the Hessian Matrix
At each major iteration a positive definite quasi-Newton approximation of the
Hessian of the Lagrangian function, H,is calculated using the BFGS method
where λi (i = 1,...,m) is an estimate of the Lagrange multipliers.

Hessian Update (BFGS)

(2-28)

Powell [11] recommends keeping the Hessian positive definite even though it
may be positive indefinite at the solution point. A positive definite Hessian is
maintained providing is positive at each update and that H is initialized
with a positive definite matrix. When is not positive, is modified on
an element by element basis so that . The general aim of this
modification is to distort the elements of , which contribute to a positive
definite update, as little as possible. Therefore, in the initial phase of the
modification, the most negative element of is repeatedly halved. This
procedure is continued until is greater than or equal to 1e-5. If after this
procedure, is still not positive, is modified by adding a vector v
multiplied by a constant scalar w, that is,

(2-29)

Hk 1+ Hk

qkqk
T

qk
Tsk

-------------
Hk

THk

sk
THksk

--------------------–+= where

sk xk 1+ xk–=

qk f xk 1+( )∇ λi gi xk 1+( )∇⋅

i 1=

n

∑ f xk( )∇ λi gi xk( )∇⋅

i 1=

n

∑+
 
 
 
 

–+=

qk
Tsk

qk
Tsk qk

qk
Tsk 0>

qk

qk.∗s·k
qk

Tsk
qk

Tsk qk

qk qk wv+=
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where

and w is systematically increased until becomes positive.

The functions fmincon, fminimax, fgoalattain, and fseminf all use SQP. If the
options parameter Display is set to 'iter', then various information is given
such as function values and the maximum constraint violation. When the
Hessian has to be modified using the first phase of the procedure described
above to keep it positive definite, then Hessian modified is displayed. If the
Hessian has to be modified again using the second phase of the approach
described above, then Hessian modified twice is displayed. When the QP
sub-problem is infeasible, then infeasible will be displayed. Such displays are
usually not a cause for concern but indicate that the problem is highly
nonlinear and that convergence may take longer than usual. Sometimes the
message no update is displayed indicating that is nearly zero. This can
be an indication that the problem setup is wrong or you are trying to minimize
a noncontinuous function.

Quadratic Programming Solution
At each major iteration of the SQP method a QP problem is solved of the form
where refers to the ith row of the m-by-n matrix A.

QP

(2-30)

The method used in the Optimization Toolbox is an active set strategy (also
known as a projection method) similar to that of Gill et al., described in [16] and
[17]. It has been modified for both LP and QP problems.

The solution procedure involves two phases: the first phase involves the
calculation of a feasible point (if one exists), the second phase involves the
generation of an iterative sequence of feasible points that converge to the
solution. In this method an active set is maintained, , which is an estimate

vi gi xk 1+( )∇ gi xk 1+( )⋅ gi xk( )∇ gi xk( ),⋅–=

if qk( )i w⋅ 0< and qk( )i sk( )i⋅ 0< i 1 …m,=( )

vi 0 otherwise=

qk
Tsk

qk
Tsk

Ai

q d( )
d ℜn∈

minimize
1
2---dTHd cTd+=

Aid bi= i 1 … me, ,=

Aid bi≤ i me 1+ … m, ,=

Ak
8



SQP Implementation
of the active constraints (i.e., which are on the constraint boundaries) at the
solution point. Virtually all QP algorithms are active set methods. This point
is emphasized because there exist many different methods that are very
similar in structure but that are described in widely different terms.

is updated at each iteration, k, and this is used to form a basis for a search
direction . Equality constraints always remain in the active set, . The
notation for the variable, , is used here to distinguish it from in the major
iterations of the SQP method. The search direction, , is calculated and
minimizes the objective function while remaining on any active constraint
boundaries. The feasible subspace for is formed from a basis, whose
columns are orthogonal to the estimate of the active set (i.e., ).
Thus a search direction, which is formed from a linear summation of any
combination of the columns of , is guaranteed to remain on the boundaries
of the active constraints.

The matrix is formed from the last m-l columns of the QR decomposition of
the matrix , where l is the number of active constraints and l < m. That is,

is given by

(2-31)

Having found , a new search direction is sought that minimizes
where is in the null space of the active constraints, that is, is a linear
combination of the columns of : for some vector p.

Then if we view our quadratic as a function of p, by substituting for , we
have

(2-32)

Differentiating this with respect to p yields

(2-33)

is referred to as the projected gradient of the quadratic function because
it is the gradient projected in the subspace defined by . The term is
called the projected Hessian. Assuming the Hessian matrix H is positive

Ak
d̂k Ak

d̂k dk
d̂k

d̂k Zk
Ak AkZk 0=

Zk

Zk
Ak

T

Zk

Zk Q : l 1:m+,[ ]=

where QTAk
T R

0
=

Zk d̂k q d( )
d̂k d̂k

Zk d̂k Zkp=

d̂k

q p( )
1
2---pTZk

THZkp cTZkp+=

q p( )∇ Zk
THZkp Zk

Tc+=

q p( )∇
Zk Zk

THZk
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definite (which is the case in this implementation of SQP), then the minimum
of the function q(p) in the subspace defined by occurs when ,
which is the solution of the system of linear equations

(2-34)

A step is then taken of the form

(2-35)

At each iteration, because of the quadratic nature of the objective function,
there are only two choices of step length . A step of unity along is the exact
step to the minimum of the function restricted to the null space of . If such
a step can be taken, without violation of the constraints, then this is the
solution to QP (Eq. 2.31). Otherwise, the step along to the nearest
constraint is less than unity and a new constraint is included in the active set
at the next iterate. The distance to the constraint boundaries in any direction

is given by

(2-36)

which is defined for constraints not in the active set, and where the direction
is towards the constraint boundary, i.e., .

When n independent constraints are included in the active set, without
location of the minimum, Lagrange multipliers, are calculated that satisfy
the nonsingular set of linear equations

(2-37)

If all elements of  are positive, is the optimal solution of QP (Eq. 2.31).
However, if any component of is negative, and it does not correspond to an
equality constraint, then the corresponding element is deleted from the active
set and a new iterate is sought.

Initialization
The algorithm requires a feasible point to start. If the current point from the
SQP method is not feasible, then a point can be found by solving the linear
programming problem

Zk q p( )∇ 0=

Zk
THZkp Zk

Tc–=
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SQP Implementation
(2-38)

The notation indicates the ith row of the matrix A. A feasible point (if one
exists) to Eq. 2.38 can be found by setting x to a value that satisfies the
equality constraints. This can be achieved by solving an under- or
over-determined set of linear equations formed from the set of equality
constraints. If there is a solution to this problem, then the slack variable is
set to the maximum inequality constraint at this point.

The above QP algorithm is modified for LP problems by setting the search
direction to the steepest descent direction at each iteration where is the
gradient of the objective function (equal to the coefficients of the linear
objective function)

(2-39)

If a feasible point is found using the above LP method, the main QP phase is
entered. The search direction is initialized with a search direction found
from solving the set of linear equations

(2-40)

where is the gradient of the objective function at the current iterate (i.e.,
).

If a feasible solution is not found for the QP problem, the direction of search for
the main SQP routine is taken as one that minimizes γ.

Line Search and Merit Function
The solution to the QP sub-problem produces a vector , which is used to form
a new iterate

(2-41)

The step length parameter is determined in order to produce a sufficient
decrease in a merit function. The merit function used by Han [15] and
Powell [15] of the form below has been used in this implementation

γ
γ ℜ∈ x ℜn∈,

minimize

Aix bi= i 1 … me, ,=

Aix γ– bi≤ i me 1+ … m, ,=

Ai

γ

gk

d̂k Zk– Zk
Tgk=

d̂k d̂1

Hd̂1 gk–=

gk xk
Hxk c+

d̂k

dk

xk 1+ xk αdk+=

αk
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Merit Function

(2-42)

Powell recommends setting the penalty parameter

(2-43)

This allows positive contribution form constraints that are inactive in the QP
solution but were recently active. In this implementation, initially the penalty
parameter is set to

(2-44)

where represents the Euclidean norm.

This ensures larger contributions to the penalty parameter from constraints
with smaller gradients, which would be the case for active constraints at the
solution point.

Ψ x( ) f x( ) ri gi x( )⋅
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∑ ri 0 gi x( ),{ }max⋅

i me 1+=
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ri rk 1+( )
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 

,
i
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ri
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⋅
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Multiobjective Optimization
Multiobjective Optimization
The rigidity of the mathematical problem posed by the general optimization
formulation given in GP (Eq. 2-1) is often remote from that of a practical design
problem. Rarely does a single objective with several hard constraints
adequately represent the problem being faced. More often there is a vector of
objectives that must be traded off in some
way. The relative importance of these objectives is not generally known until
the system’s best capabilities are determined and trade-offs between the
objectives fully understood. As the number of objectives increases, trade-offs
are likely to become complex and less easily quantified. There is much reliance
on the intuition of the designer and his or her ability to express preferences
throughout the optimization cycle. Thus, requirements for a multiobjective
design strategy are to enable a natural problem formulation to be expressed,
yet be able to solve the problem and enter preferences into a numerically
tractable and realistic design problem.

This section begins with an introduction to multiobjective optimization,
looking at a number of alternative methods. Attention is focused on the Goal
Attainment method, which can be posed as a nonlinear programing problem.
Algorithm improvements to the SQP method are presented for use with the
Goal Attainment method.

Introduction
Multiobjective optimization is concerned with the minimization of a vector of
objectives F(x) that may be the subject of a number of constraints or bounds.

MO

(2-45)

Note that, because F(x) is a vector, if any of the components of F(x) are
competing, there is no unique solution to this problem. Instead, the concept of
noninferiority [25] (also called Pareto optimality [24], [26]) must be used to
characterize the objectives. A noninferior solution is one in which an

F x( ) F1 x( ) F2 x( ) … Fm x( ), , ,{ }=

F x( )
x ℜn∈

minimize

Gi x( ) 0= i 1 … me, ,=

Gi x( ) 0≤ i me 1 … m, ,+=

xl x xu≤ ≤
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improvement in one objective requires a degradation of another. To define this
concept more precisely, consider a feasible region, Ω, in the parameter space

that satisfies all the constraints, i.e.,

(2-46)

This allows us to define the corresponding feasible region for the objective
function space Λ

(2-47)

The performance vector, F(x), maps parameter space into objective function
space as is represented for a two-dimensional case in Figure 2-9 below.

Figure 2-9:  Mapping from Parameter Space into Objective Function Space

A noninferior solution point can now be defined.

Definition: A point is a noninferior solution if for some neighborhood of
there does not exist a such that and

(2-48)

x ℜn∈

Ω x ℜn∈{ }=

subject to gi x( ) 0= i 1 … me, ,=

gi x( ) 0≤ i me 1+ … m, ,=

xl x xu≤ ≤

Λ y ℜm∈{ }= where y F x( )= subject to x Ω.∈

x1

x2

F1

F2

Ω
Λ

•

•

x* Ω∈
x* ∆x x* ∆x+( ) Ω∈

Fi x* ∆x+( ) Fi x*( )≤ i 1 … m, ,=

Fj x* ∆x+( ) Fj x*( )< for some j.
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Multiobjective Optimization
In the two-dimensional representation of Figure 2-10 the set of noninferior
solutions lies on the curve between C and D. Points A and B represent specific
noninferior points.

Figure 2-10:  Set of Noninferior Solutions

A and B are clearly noninferior solution points because an improvement in one
objective, , requires a degradation in the other objective, , i.e.,

.

Since any point in Ω that is not a noninferior point represents a point in which
improvement can be attained in all the objectives, it is clear that such a point
is of no value. Multiobjective optimization is, therefore, concerned with the
generation and selection of noninferior solution points. The techniques for
multiobjective optimization are wide and varied and all the methods cannot be
covered within the scope of this toolbox. However, some of the techniques are
described below.

Weighted Sum Strategy
The weighted sum strategy converts the multiobjective problem of minimizing
the vector into a scalar problem by constructing a weighted sum of all the
objectives.

•

F1

F2

Λ
noninferior

solutions•
•

A
C

B

D•

F1A

F1B

F2A F2B

F1 F2
F1B F1A< F2B F2A>,

F x( )
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Weighted Sum

(2-49)

The problem can then be optimized using a standard unconstrained
optimization algorithm. The problem here is in attaching weighting
coefficients to each of the objectives. The weighting coefficients do not
necessarily correspond directly to the relative importance of the objectives or
allow trade-offs between the objectives to be expressed. Further, the
noninferior solution boundary may be nonconcurrent so that certain solutions
are not accessible.

This can be illustrated geometrically. Consider the two objective case in
Figure . In the objective function space a line, L, is drawn. The
minimization of Eq. 2-49 can be interpreted as finding the value of c for which
L just touches the boundary of Λ as it proceeds outwards from the origin.
Selection of weights and , therefore, defines the slope of L, which in turn
leads to the solution point where L touches the boundary of Λ.

Figure 2-11:  Geometrical Representation of the Weighted Sum Method

The aforementioned convexity problem arises when the lower boundary of Λ is
nonconvex as shown in Figure 2-12. In this case the set of noninferior solutions
between A and B is not available.

f x( ) wi Fi x( )2⋅

i 1=

m

∑=
x Ω∈

minimize

wTF x( ) c=

w1 w2

L

Λ

F
2

F
1

wTF x( ) c=
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Multiobjective Optimization
Figure 2-12:  Nonconvex Solution Boundary

ε-Constraint Method
A procedure that overcomes some of the convexity problems of the weighted
sum technique is the -constraint method. This involves minimizing a primary
objective, , and expressing the other objectives in the form of inequality
constraints

(2-50)

Figure 2-13 shows a two-dimensional representation of the -constraint
method for a two objective problem.

B

A
L

Λ

F2

F1

•

•

ε
Fp

Fp x( )
x Ω∈

minimize

subject to Fi x( ) εi≤ i 1 … m, ,= i p≠

ε
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Figure 2-13:  Geometrical Representation of ε-Constraint Method

This approach is able to identify a number of noninferior solutions on a
nonconvex boundary that are not obtainable using the weighted sum
technique, for example, at the solution point and . A
problem with this method is, however, a suitable selection of to ensure a
feasible solution. A further disadvantage of this approach is that the use of
hard constraints is rarely adequate for expressing true design objectives.
Similar methods exist, such as that of Waltz [31], which prioritize the
objectives. The optimization proceeds with reference to these priorities and
allowable bounds of acceptance. The difficulty here is in expressing such
information at early stages of the optimization cycle.

In order for the designers’ true preferences to be put into a mathematical
description, the designers must express a full table of their preferences and
satisfaction levels for a range of objective value combinations. A procedure
must then be realized that is able to find a solution with reference to this. Such
methods have been derived for discrete functions using the branches of
statistics known as decision theory and game theory (for a basic introduction,
see [28]). Implementation for continuous functions requires suitable
discretization strategies and complex solution methods. Since it is rare for the
designer to know such detailed information, this method is deemed impractical
for most practical design problems. It is, however, seen as a possible area for
further research.

Λ

F
1s

F1

F2ε2

F1 x( )
x Ω∈

minimize subject to: F2x ε2≤

F1 F1s= F2 ε2=
ε
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Multiobjective Optimization
What is required is a formulation that is simple to express, retains the
designers preferences, and is numerically tractable.

Goal Attainment Method
The method described here is the Goal Attainment method of Gembicki [27].
This involves expressing a set of design goals, , which is
associated with a set of objectives, . The
problem formulation allows the objectives to be under- or over-achieved
enabling the designer to be relatively imprecise about initial design goals. The
relative degree of under- or over-achievement of the goals is controlled by a
vector of weighting coefficients, , and is expressed as a
standard optimization problem using the following formulation:

Goal Attainment

(2-51)

The term introduces an element of slackness into the problem, which
otherwise imposes that the goals be rigidly met. The weighting vector, w,
enables the designer to express a measure of the relative trade-offs between the
objectives. For instance, setting the weighting vector, w, equal to the initial
goals indicates that the same percentage under- or over-attainment of the
goals, , is achieved. Hard constraints can be incorporated into the design by
setting a particular weighting factor to zero (i.e., ). The Goal Attainment
method provides a convenient intuitive interpretation of the design problem,
which is solvable using standard optimization procedures. Illustrative
examples of the use of Goal Attainment method in control system design can
be found in Fleming [29,30].

The Goal Attainment method is represented geometrically in Figure 2-14 for
the two-dimensional problem.

F* F1
* F2

* … Fm
*,,,{ }=

F x( ) F1 x( ) F2 x( ) … Fm x( ),,,{ }=

w w1 w2 … wm, , ,{ }=

γ
γ ℜ∈ x Ω∈,

minimize

such that Fi x( ) wiγ– Fi
*≤ i 1 … m, ,=

wiγ

F*

wi 0=
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Figure 2-14:  Geometrical Representation of Goal Attainment Method

Specification of the goals, , defines the goal point, P. The weighting
vector defines the direction of search from P to the feasible function space, 

. During the optimization γ is varied, which changes the size of the feasible
region. The constraint boundaries converge to the unique solution point

.

Algorithm Improvements for Goal Attainment 
Method
The Goal Attainment method has the advantage that it can be posed as a
nonlinear programming problem. Characteristics of the problem can also be
exploited in a nonlinear programming algorithm. In Sequential Quadratic
Programming (SQP) the choice of merit function for the line search is not easy
because, in many cases, it is difficult to “define” the relative importance
between improving the objective function and reducing constraint violations.
This has resulted in a number of different schemes for constructing the merit
function (see, for example, Schittowski [22]). In Goal Attainment programming
there may be a more appropriate merit function, which can be achieved by
posing Eq. 2-51 as the minimax problem

w
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F1s
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*≤–
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* F2
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(2-52)

Following the argument of Brayton et al. [32] for minimax optimization using
SQP, using the merit function of Eq. 2-43 for the Goal Attainment problem of
Eq. 2-52, gives

(2-53)

When the merit function of Eq. 2-53 is used as the basis of a line search
procedure, then, although may decrease for a step in a given search
direction, the function max may paradoxically increase. This is accepting a
degradation in the worst case objective. Since the worst case objective is
responsible for the value of the objective function γ, this is accepting a step that
ultimately increases the objective function to be minimized. Conversely,

may increase when max decreases implying a rejection of a step that
improves the worst case objective.

Following the lines of Brayton et al. [32], a solution is therefore to set
equal to the worst case objective, i.e.,

(2-54)

A problem in the Goal Attainment method is that it is common to use a
weighting coefficient equal to zero to incorporate hard constraints. The merit
function of Eq. 2-54 then becomes infinite for arbitrary violations of the
constraints. To overcome this problem while still retaining the features of Eq.
2-54 the merit function is combined with that of Eq. 2-43 giving the following:

(2-55)

Another feature that can be exploited in SQP is the objective function γ. From
the KT equations (Eq. 2-24) it can be shown that the approximation to the
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minimize
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Hessian of the Lagrangian, H, should have zeros in the rows and columns
associated with the variable γ. By initializing H as the identity matrix, this
property does not appear. H is therefore initialized and maintained to have
zeros in the rows and columns associated with γ.

These changes make the Hessian, H, indefinite, therefore H is set to have zeros
in the rows and columns associated with γ, except for the diagonal element,
which is set to a small positive number (e.g., 1e–10). This allows use of the fast
converging positive definite QP method described in the “Quadratic
Programming Solution” section.

The above modifications have been implemented in fgoalattain and have
been found to make the method more robust. However, due to the rapid
convergence of the SQP method, the requirement that the merit function
strictly decrease sometimes requires more function evaluations than an
implementation of SQP using the merit function of (Eq. 2-43).
2



Review
Review
A number of different optimization strategies have been discussed. The
algorithms used (e.g., BFGS, Levenberg-Marquardt and SQP) have been
chosen for their robustness and iterative efficiency. The choice of problem
formulation (e.g., unconstrained, least squares, constrained, minimax,
multiobjective, or goal attainment) depends on the problem being considered
and the required execution efficiency.
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Large-Scale Optimization
To solve large-scale optimization problems, special techniques are needed. This
chapter describes the techniques used in the Optimization Toolbox for the
large-scale methods, in particular trust region methods, preconditioned
conjugate gradients, projection methods for equality constraints, and reflective
Newton methods for bound constraints. Finally, we describe interior-point
techniques for linear programming, specifically a primal-dual Mehrotra
predictor-corrector method.



Trust Region Methods for Nonlinear Minimization
Trust Region Methods for Nonlinear Minimization
Many of the methods used in the Optimization Toolbox are based on the trust
region idea, a simple yet powerful concept in optimization.

To understand the trust region approach to optimization, consider the
unconstrained minimization problem, minimize where the function takes
vector arguments and returns scalars. Suppose we are at a point in n-space
and we want to improve, i.e., move to a point with a lower function value. The
basic idea is to approximate with a simpler function which reasonably
reflects the behavior of function in a neighborhood around the point x. This
neighborhood is the trust region. A trial step is computed by minimizing (or
approximately minimizing) over N. This is the trust region subproblem,

(3-1)

The current point is updated to be if otherwise, the current
point remains unchanged and N, the region of trust, is shrunk and the trial
step computation is repeated.

The key questions in defining a specific trust region approach to minimizing
are how to choose and compute the approximation (defined at the

current point ), how to choose and modify the trust region N, and how
accurately to solve the trust region subproblem. In this section we focus on the
unconstrained problem; additional complications due to the presence of
constraints on the variables are discussed in later sections.

In the standard trust region method ([2]), the quadratic approximation is
defined by the first two terms of the Taylor approximation to at x; the
neighborhood is usually spherical or ellipsoidal in shape. Mathematically
the trust region subproblem is typically stated

(3-2)

where is the gradient of at the current point x, is the Hessian matrix
(the symmetric matrix of second derivatives), is a diagonal scaling matrix,
∆ is a positive scalar, and || . || is the 2-norm. Good algorithms exist for solving
Eq. 3-2 (see [2]); such algorithms typically involve the computation of a full
eigensystem and a Newton process applied to the secular equation

f x( ),
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Such algorithms provide an accurate solution to Eq. 3-2, however they require
time proportional to several factorizations of H; therefore, for large-scale
problems a different approach is needed. Several approximation and heuristic
strategies, based on Eq. 3-2, have been proposed in the literature ([2],[10]). The
approximation approach we follow in the Optimization Toolbox is to restrict the
trust region subproblem to a two-dimensional subspace ([2],[1]). Once the
subspace has been computed, the work to solve Eq. 3-2 is trivial even if full
eigenvalue/eigenvector information is needed (since in the subspace, the
problem is only two-dimensional). The dominant work has now shifted to the
determination of the subspace.

The two-dimensional subspace is determined with the aid of a
preconditioned conjugate gradient process described below. The toolbox
assigns where is in the direction of the gradient g, and is
either an approximate Newton direction, i.e., a solution to

(3-3)

or a direction of negative curvature

(3-4)

The philosophy behind this choice of is to force global convergence (via the
steepest descent direction or negative curvature direction) and achieve fast
local convergence (via the Newton step, when it exists).

A framework for the Optimization Toolbox approach to unconstrained
minimization using trust region ideas is now easy to describe:

• Formulate the two-dimensional trust region subproblem

• Solve Eq. 3-2 to determine the trial step

• If then

• Adjust

These four steps are repeated until convergence. The trust region dimension
is adjusted according to standard rules. In particular, it is decreased if the trial
step is not accepted, i.e., See [9],[6] for a discussion of this
aspect.

1
∆---

1
s-------– 0=

S
S

S

S s1 s2,〈 〉= s1 s2
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T H s2⋅ ⋅ 0<

S

s

f x s+( ) f x( )≤( ) x x s+=

∆

∆
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Trust Region Methods for Nonlinear Minimization
The Optimization Toolbox treats a few important special cases of f with
specialized functions: nonlinear least-squares, quadratic functions, and linear
least-squares. However, the underlying algorithmic ideas are the same as for
the general case. These special cases are discussed in later sections.
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Preconditioned Conjugate Gradients
A popular way to solve large symmetric positive definite systems of linear
equations is the method of preconditioned conjugate gradients
(PCG). This iterative approach requires the ability to perform matrix-vector
products of the form where is an arbitrary vector. The matrix positive
definite matrix M is a preconditioner for H, that is, where
is well-conditioned matrix or a matrix with clustered eigenvalues.

Algorithm PCG
% Initializations
r = –g; p = zeros(n,1); 
% Precondition 
z = M\r; inner1 = r'*z; inner2 = 0; d = z;
% Conjugate gradient iteration
for k = 1:kmax

if k > 1
beta = inner1/inner2;
d = z + beta*d;

   end
w = H*d; denom = d'*w;

if denom <= 0 
p = d/norm(d); % Direction of negative/zero curvature
break % Exit if zero/negative curvature detected

   else
alpha = inner1/denom;
p = p + alpha*d;
r = r – alpha*w;

   end
   z = M\r;

if norm(z) <= tol % Exit if Hp=–g solved within tolerance
break

   end
   inner2 = inner1;
   inner1 = r'*z;
end

In a minimization context you can assume that the Hessian matrix is
symmetric. However, is guaranteed to be positive definite only in the
neighborhood of a strong minimizer. Algorithm PCG exits when a direction of

Hp g–=

H v⋅ v
M C2= C 1– HC 1–

H
H



Preconditioned Conjugate Gradients
negative (or zero) curvature is encountered, i.e., . The PCG output
direction, p, is either a direction of negative curvature or an approximate (tol
controls how approximate) solution to the Newton system In either
case is used to help define the two-dimensional subspace used in the trust
region approach discussed in the section “Trust Region Methods for Nonlinear
Minimization.”

dTHd 0≤

Hp g.–=
p
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Linearly Constrained Problems
Linear constraints complicate the situation described for unconstrained
minimization; however, the underlying ideas described above can be carried
through in a clean and efficient way. The large-scale methods in the
Optimization Toolbox generate strictly feasible iterates: a projection technique
is used for linear equality constraints, reflections are used with simple box
constraints.

Linear Equality Constraints
The general linear equality constrained minimization problem can be written

(3-5)

where is an m-by-n matrix ( ). The Optimization Toolbox preprocesses
to remove strict linear dependencies using a technique based on the

LU-factorization of ([6]). Here we will assume is of rank m.

Our method to solve Eq. 3-5 differs from our unconstrained approach in two
significant ways. First, an initial feasible point is computed, using a sparse
least-squares step, so that . Second, Algorithm PCG is replaced with
Reduced Preconditioned Conjugate Gradients (RPCG), see [6], in order to
compute an approximate reduced Newton step (or a direction of negative
curvature in the null space of ). The key linear algebra step involves solving
systems of the form

(3-6)

where approximates (small nonzeros of are set to zero provided rank is
not lost) and is a sparse symmetric positive-definite approximation to H, i.e.,

. See [6] for more details.

Box Constraints
The box constrained problem is of the form

(3-7)

min f x( ) such that Ax b={ }
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Linearly Constrained Problems
where l is a vector of lower bounds, and u is a vector of upper bounds. Some (or
all) of the components of may be equal to and some (or all) of the
components of may be equal to The method generates a sequence of
strictly feasible points. Two techniques are used to maintain feasibility while
achieving robust convergence behavior. First, a scaled modified Newton step
replaces the unconstrained Newton step (to define the two-dimensional
subspace ). Second, reflections are used to increase the stepsize.

The scaled modified Newton step arises from examining the Kuhn-Tucker
necessary conditions for Eq. 3-7

(3-8)

where

and the vector is defined below, for each

• If and then

• If and then

• If and then

• If and then

The nonlinear system Eq. 3-8 is not differentiable everywhere;
nondifferentiability occurs when Hence we avoid such points by
maintaining strict feasibility, i.e., restricting

The scaled modified Newton step for Eq. 3-8 is defined as the solution to the
linear system

(3-9)

where

(3-10)
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(3-11)

Here plays the role of the Jacobian of Each diagonal component of the
diagonal matrix equals 0, -1 or 1. If all the components of l and u are finite,

At a point where may not be differentiable. We
define at such a point. Nondifferentiability of this type is not a cause
for concern because, for such a component, it is not significant which value
takes. Further will still be discontinuous at this point, but the function

is continuous.

Second, reflections are used to increase the stepsize. A (single) reflection step
is defined as follows. Given a step that intersects a bound constraint,
consider the first bound constraint crossed by p; assume it is the ith bound
constraint (either the ith upper or ith lower bound). Then the reflection step

except in the ith component where

M̂ D 1– HD 1– diag(g )Jv
+=

Jv v .
Jv

Jv diag sign g( )( ).= gi 0,= vi
Jii

v 0=
vi

vi
vi gi⋅

p
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Nonlinear Least-Squares
Nonlinear Least-Squares
An important special case for f(x) is the nonlinear least-squares problem

(3-12)

where is a vector-valued function with component i of equal to
The basic method used to solve this problem is the same as in the general case
described in “Trust Region Methods for Nonlinear Minimization.” However,
the structure of the nonlinear least-squares problem is exploited to enhance
efficiency. In particular, an approximate Gauss-Newton direction, i.e., a
solution s to

(3-13)

(where J is the Jacobian of ) is used to help define the two-dimensional
subspace . Second derivatives of the component function are not used.

In each iteration the method of preconditioned conjugate gradients is used to
approximately solve the normal equations, i.e.,

although the normal equations are not explicitly formed.
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Quadratic Programming 
In this case the function f(x) is the quadratic equation

The subspace trust region method is used to determine a search direction.
However, instead of restricting the step to (possibly) one reflection step as in
the nonlinear minimization case, a piecewise reflective line search is conducted
at each iteration. See [5] for details of the line search.

q x( ) 1
2---xTHx fTx+=
2



Linear Least-Squares
Linear Least-Squares
In this case the function f(x) to be solved is

The algorithm generates strictly feasible iterates converging, in the limit, to a
local solution. Each iteration involves the approximate solution of a large
linear system (of order n, where n is the length of x); the iteration matrices have
the structure of the matrix C. In particular, the method of preconditioned
conjugate gradients is used to approximately solve the normal equations, i.e,

although the normal equations are not explicitly formed.

The subspace trust region method is used to determine a search direction.
However, instead of restricting the step to (possibly) one reflection step as in
the nonlinear minimization case, a piecewise reflective line search is conducted
at each iteration, as in the quadratic case. See [5] for details of the line search.
Ultimately, the linear systems represent a Newton approach capturing the
first-order optimality conditions at the solution: resulting in strong local
convergence rates.

f x( )
1
2---x

T
CTCx xTCTd+=

CTCx C–
Td=
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Large-Scale Linear Programming
Linear programming is defined as

(3-14)

The large-scale method is based on LIPSOL ([11]), which is a variant of
Mehrotra’s predictor-corrector algorithm ([7]), a primal-dual interior-point
method.

Main Algorithm
The algorithm begins by applying a series of preprocessing steps (see
“Preprocessing” on page 3-17). After preprocessing, the problem has the form

(3-15)

The upper bounds constraints are implicitly included in the constraint matrix
A with the addition of primal slack variables s, Eq. 3-15 becomes

(3-16)

which is referred to as the primal problem: x consists of the primal variables
and s consists of the primal slack variables. The dual problem is

(3-17)

where y and w consist of the dual variables and z consists of the dual slacks.
The optimality conditions for this linear program, i.e., the primal Eq. 3-16 and
the dual Eq. 3-17, are

min f Tx such that

Aeq x⋅ beq=

Aineq x⋅ bineq≤
l x u≤ ≤ 

 
 
 
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 

min f Tx such that

A x⋅ b=

x s+ u=
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 
 
 

max bTy uTw– such that AT y⋅ w– z+ f=
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Large-Scale Linear Programming
(3-18)

where and denote component-wise multiplication.

The quadratic equations and are called the
complementarity conditions for the linear program; the other (linear) equations
are called the feasibility conditions. The quantity

is the duality gap, which measures the residual of the complementarity portion
of F when .

The algorithm is a primal-dual algorithm meaning that both the primal and
the dual programs are solved simultaneously. It can be considered a
Newton-like method, applied to the linear-quadratic system

in Eq. 3-18, while at the same time keeping the iterates x,
z, w, and s positive, thus the name interior-point method. (The iterates are in
the strictly interior region represented by the inequality constraints in Eq.
3-16.)

The algorithm is a variant of the predictor-corrector algorithm proposed by
Mehrotra. Consider an iterate , where
We first compute the so-called prediction direction

which is the Newton direction; then the so-called corrector direction

where is called the centering parameter and must be chosen carefully.
is a zero-one vector with the ones corresponding to the quadratic equations in
F(v), i.e., the perturbations are only applied to the complementarity conditions,
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which are all quadratic, but not to the feasibility conditions, which are all
linear. We combine the two directions with a step-length parameter and
update v to obtain the new iterate

where the step-length parameter is chosen so that

satisfies

In solving for the steps above, the algorithm computes a (sparse) direct
factorization on a modification of the Cholesky factors of If A has dense
columns, it instead uses the Sherman-Morrison formula, and if that solution is
not adequate (the residual is too large), it uses preconditioned conjugate
gradients to find a solution.

The algorithm then repeats these steps until the iterates converge. The main
stopping criteria is a standard one

where

are the primal residual, dual residual, and upper-bound feasibility
respectively, and

is the difference between the primal and dual objective values, and tol is some
tolerance. The sum in the stopping criteria measures the total relative errors
in the optimality conditions in Eq. 3-18.
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rf
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ru x s u–+=
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Preprocessing
A number of preprocessing steps occur before the actual iterative algorithm
begins. The resulting transformed problem is one where:

• All variables are bounded below by zero.

• All constraints are equalities.

• Fixed variables, those with equal upper and lower bounds, are removed.

• Rows of all zeros in the constraint matrix are removed.

• The constraint matrix has full structural rank.

• Columns of all zeros in the constraint matrix are removed.

• When a significant number of singleton rows exist in the constraint matrix,
the associated variables are solved for and the rows removed.

While these preprocessing steps can do much to speed up the iterative part of
the algorithm, if the Lagrange multipliers are required, the preprocessing
steps must be “undone” since the multipliers calculated during the algorithm
are for the transformed, and not the original, problem. Thus, if the multipliers
are not requested, this transformation back will not be computed, and may
save some time computationally.
3-17



3 Large-Scale Algorithms

3-1
References
[1] Branch, M.A., T.F. Coleman, Y. Li, “A Subspace, Interior, and Conjugate

Gradient Method for Large-Scale Bound-Constrained Minimization
Problems,” to appear in a future SIAM Journal on Scientific Computing.

[2] Byrd, R.H., R.B. Schnabel, and G.A. Shultz, “Approximate Solution of the
Trust Region Problem by Minimization over Two-Dimensional
Subspaces,” Mathematical Programming, Vol. 40, pp. 247-263, 1988.

[3] Coleman, T.F. and Y. Li, “On the Convergence of Reflective Newton
Methods for Large-Scale Nonlinear Minimization Subject to Bounds,”
Mathematical Programming, Vol. 67, Number 2, pp. 189-224, 1994.

[4] Coleman, T.F. and Y. Li, “An Interior, Trust Region Approach for
Nonlinear Minimization Subject to Bounds,” SIAM Journal on
Optimization, Vol. 6, pp. 418-445, 1996.

[5] Coleman, T.F. and Y. Li, “A Reflective Newton Method for Minimizing a
Quadratic Function Subject to Bounds on some of the Variables,” SIAM
Journal on Optimization, Vol. 6, Number 4, pp. 1040-1058, 1996.

[6] Coleman, T.F. and A. Verma, “On Preconditioning Conjugate Gradients
for Linear Equality Constrained Minimization,” submitted to SIAM
Journal on Scientific Computing.

[7] Mehrotra, S., “On the Implementation of a Primal-Dual Interior Point
Method,” SIAM Journal on Optimization, Vol. 2, pp. 575-601, 1992.

[8] Moré, J.J. and D.C. Sorensen, “Computing a Trust Region Step,” SIAM
Journal on Scientific and Statistical Computing, Vol. 3, pp. 553-572,
1983.

[9] Sorensen, D.C., “Minimization of a Large Scale Quadratic Function
Subject to an Ellipsoidal Constraint,” Department of Computational and
Applied Mathematics, Rice University, Technical Report TR94-27, 1994.

[10] Steihaug, T., “The Conjugate Gradient Method and Trust Regions in
Large Scale Optimization,” SIAM Journal on Numerical Analysis, Vol.
20, pp. 626-637, 1983.

[11] Zhang, Y., “Solving Large-Scale Linear Programs by Interior-Point
Methods Under the MATLAB Environment,” Department of
Mathematics and Statistics, University of Maryland, Baltimore County,
Baltimore, MD, Technical Report TR96-01, July, 1995.
8



4

Reference



4 Reference

4-2
This chapter contains descriptions of the Optimization Toolbox functions,
listed alphabetically. The chapter starts with tables listing the types of
optimization and which functions apply. The next set of tables lists general
descriptions of all the input and output arguments and the parameters in the
optimization options structure, and which functions use those arguments or
parameters. Information specific to a function about input arguments, output
arguments, and options is listed within that function’s reference pages under
the Arguments section, after the function description.

Information is also available through the online Help facility.



Optimization Functions
Optimization Functions

Minimization

Equation Solving

Function Purpose

fgoalattain Multiobjective goal attainment

fminbnd Scalar nonlinear minimization with bounds

fmincon Constrained nonlinear minimization

fminimax Minimax optimization

fminsearch,
fminunc

Unconstrained nonlinear minimization

fseminf Semi-infinite minimization

linprog Linear programming

quadprog Quadratic programming

Function Purpose

\ Linear equation solving (see the online MATLAB
Function Reference guide)

fsolve Nonlinear equation solving

fzero Scalar nonlinear equation solving
4-3
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Least-Squares (Curve Fitting)

Utility

Demonstrations of Large-Scale Methods

Function Purpose

\ Linear least squares (see the online MATLAB
Function Reference guide)

lsqlin Constrained linear least squares

lsqcurvefit Nonlinear curve fitting

lsqnonlin Nonlinear least squares

lsqnonneg Nonnegative linear least squares

Function Purpose

optimset, 
optimget

Parameter setting

Function Purpose

circustent Quadratic programming to find shape of a circus
tent

molecule Molecule conformation solution using
unconstrained nonlinear minimization

optdeblur Image deblurring using bounded linear
least-squares



Optimization Functions
Demonstrations of Medium-Scale Methods

Function Purpose

bandemo Minimization of the banana function

dfildemo Finite-precision filter design (requires Signal
Processing Toolbox)

goaldemo Goal attainment example

optdemo Menu of demonstration routines

tutdemo Tutorial walk-through
4-5



4 Reference

4-6
Function Arguments
These tables describe arguments used by Optimization Toolbox functions: the
first describes input arguments, the second describes the output arguments,
and the third describes the optimization options parameters structure
options.

This table summarizes the input arguments. Not all functions use all
arguments. See the individual reference pages for function-specific details
about these arguments.

Table 4-1:  Input Arguments

Argument Description Used by Functions

A, b The matrix A and vector b are, respectively, the coefficients
of the linear inequality constraints and the corresponding
right-hand side vector: A.x<=b.

fgoalattain,
fmincon, fminimax,
fseminf, linprog,
lsqlin, quadprog

Aeq, beq The matrix Aeq and vector beq are, respectively, the
coefficients of the linear equality constraints and the
corresponding right-hand side vector: Aeq.x=beq.

fgoalattain,
fmincon, fminimax,
fseminf, linprog,
lsqlin, quadprog

C, d The matrix C and vector d are, respectively, the coefficients
of the over- or under-determined linear system and the
right-hand-side vector to be solved.

lsqlin, lsqnonneg

f The vector of coefficients for the linear term in the linear
equation f'*x or the quadratic equation x'*H*x+f'*x.

linprog, quadprog

fun The function to be optimized. fun may be an inline object,
or the name of an M-file, built-in function, or MEX-file. See
the individual function reference pages for more
information on fun.

fgoalattain,
fminbnd, fmincon,
fminimax,
fminsearch,
fminunc, fseminf,
fsolve, fzero,
lsqcurvefit,
lsqnonlin



Function Arguments
goal Vector of values that the objectives attempt to attain. The
vector is the same length as the number of objectives.

fgoalattain

H The matrix of coefficients for the quadratic terms in the
quadratic equation x'*H*x+f'*x. H must be symmetric.

quadprog

lb, ub Lower and upper bound vectors (or matrices). The
arguments are normally the same size as x. However, if lb
has fewer elements than x, say only m, then only the first m
elements in x are bounded below; upper bounds in ub can
be defined in the same manner. Unbounded variables may
also be specified using –Inf (for lower bounds) or Inf (for
upper bounds). For example, if lb(i) = –Inf then the
variable x(i) is unbounded below.

fgoalattain,
fmincon, fminimax,
fseminf, linprog,
lsqcurvefit,
lsqlin, lsqnonlin,
quadprog

nonlcon The function that computes the nonlinear inequality and
equality constraints. nonlcon is the name of an M-file or
MEX-file. See the individual reference pages for more
information on nonlcon.

fgoalattain,
fmincon, fminimax

ntheta The number of semi-infinite constraints. fseminf

options An optimization options parameter structure that defines
parameters used by the optimization functions. For
information about the parameters, see Table 4-3 or the
individual function reference pages.

All functions

Table 4-1:  Input Arguments (Continued)

Argument Description Used by Functions
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P1, P2,... Additional arguments to be passed to fun, nonlcon (if it
exists), or seminfcon (if it exists), that is, when the
optimization function calls the functions fun, nonlcon, or
seminfcon, the calls are

f = feval(fun,x,P1,P2,...)

[c, ceq] = feval(nonlcon,x,P1,P2,...)

[c,ceq,K1,K2,...,Kn,s]= ... 
feval(seminfcon,x,s,P1,P2,...)

Using this feature, the same fun (or nonlcon or seminfcon)
can solve a number of similar problems with different
parameters, avoiding the need to use global variables.

fgoalattain,
fminbnd, fmincon,
fminimax,
fminsearch,
fminunc, fseminf,
fsolve, fzero,
lsqcurvefit,
lsqnonlin

seminfcon The function that computes the nonlinear inequality and
equality constraints and the semi-infinite constraints.
seminfcon is the name of an M-file or MEX-file. See the
individual function reference pages for fseminf more
information on seminfcon.

fseminf

weight A weighting vector to control the relative under-attainment
or over-attainment of the objectives.

fgoalattain

xdata, 
ydata

The input data xdata and the observed output data ydata
that is to be fit to an equation.

lsqcurvefit

x0 Starting point (a scalar, vector or matrix).
(For fzero, x0 can also be a two-element vector
representing an interval that is known to contain a zero.)

All functions except
fminbnd

x1, x2 The interval over which the function is minimized. fminbnd

Table 4-1:  Input Arguments (Continued)

Argument Description Used by Functions



Function Arguments
Table 4-2:  Output Arguments

Argument Description Used by Functions

attainfactor The attainment factor at the solution x. fgoalattain

exitflag The exit condition. For the meaning of a particular
value, see the function reference pages.

All functions

fval The value of the objective function fun at the solution x. fgoalattain,
fminbnd, fmincon,
fminimax,
fminsearch,
fminunc, fseminf,
fsolve, fzero,
linprog, quadprog

grad The value of the gradient of fun at the solution x. fmincon, fminunc

hessian The value of the Hessian of fun at the solution x. fmincon, fminunc

jacobian The value of the Jacobian of fun at the solution x. lsqcurvefit,
lsqnonlin, fsolve

lambda The Lagrange multipliers at the solution x. lambda is a
structure where each field is for a different constraint
type. For structure field names, see individual function
descriptions. (For lsqnonneg, lambda is simply a vector
as lsqnonneg only handles one kind of constraint.)

fgoalattain,
fmincon,
fminimax,
fseminf, linprog,
lsqcurvefit,
lsqlin,
lsqnonlin,
lsqnonneg,
quadprog

maxfval max{fun(x)} at the solution x. fminimax

output An output structure that contains information about
the results of the optimization. For structure field
names, see individual function descriptions.

All functions
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This table describes fields in the optimization parameters structure, options.
The column labeled L, M, B provides this information about each parameter:

• L – The parameter only applies to large-scale methods.

• M – The parameter only applies to medium-scale methods.

• B – The parameter applies to both large- and medium-scale methods.

residual The value of the residual at the solution x. lsqcurvefit,
lsqlin,
lsqnonlin,
lsqnonneg

resnorm The value of the squared 2-norm of the residual at the
solution x.

lsqcurvefit,
lsqlin,
lsqnonlin,
lsqnonneg

x The solution found by the optimization function. If
exitflag > 0 then x is a solution; otherwise, x is the
value the optimization routine was at when it
terminated prematurely.

All functions

Table 4-2:  Output Arguments (Continued)

Argument Description Used by Functions

Table 4-3:  Optimization Options Parameters

Parameter Name Description L, M, B Used by Functions

DerivativeCheck Compare user-supplied analytic
derivatives (gradients or
Jacobian) to finite differencing
derivatives.

M fgoalattain, fmincon,
fminimax, fminunc,
fseminf, fsolve,
lsqcurvefit, lsqnonlin

Diagnostics Print diagnostic information
about the function to be
minimized or solved.

B All but fminbnd,
fminsearch, fzero, and
lsqnonneg
0



Function Arguments
DiffMaxChange Maximum change in variables
for finite difference derivatives.

M fgoalattain, fmincon,
fminimax, fminunc,
fseminf, fsolve,
lsqcurvefit, lsqnonlin

DiffMinChange Minimum change in variables for
finite difference derivatives.

M fgoalattain, fmincon,
fminimax, fminunc,
fseminf, fsolve,
lsqcurvefit, lsqnonlin

Display Level of display. 'off' displays
no output; 'iter' displays
output at each iteration; 'final'
displays just the final output.

B All

GoalsExactAchieve Number of goals to achieve
exactly (do not over- or
underachieve).

M fgoalattain

GradConstr Gradients for the nonlinear
constraints defined by user.

M fgoalattain, fmincon,
fminimax

GradObj Gradient(s) for the objective
function(s) defined by user.

B fgoalattain, fmincon,
fminimax, fminunc,
fseminf

Hessian Hessian for the objective
function defined by user.

L fmincon, fminunc

HessPattern Sparsity pattern of the Hessian
for finite differencing.

L fmincon, fminunc

HessUpdate Quasi-Newton updating scheme. M fminunc

Jacobian Jacobian for the objective
function defined by user.

B fsolve, lsqcurvefit,
lsqnonlin

JacobPattern Sparsity pattern of the Jacobian
for finite differencing.

L fsolve, lsqcurvefit,
lsqnonlin

Table 4-3:  Optimization Options Parameters (Continued)

Parameter Name Description L, M, B Used by Functions
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LargeScale Use large-scale algorithm if
possible.

B fmincon, fminunc,
fsolve, linprog,
lsqcurvefit, lsqlin,
lsqnonlin, quadprog

LevenbergMarquardt Chooses Levenberg-Marquardt
over Gauss-Newton algorithm.

M fsolve, lsqcurvefit,
lsqnonlin

LineSearchType Line search algorithm choice. M fminunc, fsolve,
lsqcurvefit, lsqnonlin

MaxFunEvals Maximum number of function
evaluations allowed.

B fgoalattain, fminbnd,
fmincon, fminimax,
fminsearch, fminunc,
fseminf, fsolve,
lsqcurvefit, lsqnonlin

MaxIter Maximum number of iterations
allowed.

B All but fzero and
lsqnonneg

MaxPCGIter Maximum number of PCG
iterations allowed.

L fmincon, fminunc,
fsolve, lsqcurvefit,
lsqlin, lsqnonlin,
quadprog

MeritFunction Use goal attainment/minimax
merit function (multiobjective)
vs. fmincon (single objective).

M fgoalattain, fminimax

MinAbsMax Number of F(x) to minimize the
worst case absolute values

M fminimax

PrecondBandWidth Upper bandwidth of
preconditioner for PCG.

L fmincon, fminunc,
fsolve, lsqcurvefit,
lsqlin, lsqnonlin,
quadprog

Table 4-3:  Optimization Options Parameters (Continued)

Parameter Name Description L, M, B Used by Functions
2



Function Arguments
TolCon Termination tolerance on the
constraint violation.

B fgoalattain, fmincon,
fminimax, fseminf

TolFun Termination tolerance on the
function value.

B All but fminbnd, fzero,
and lsqnonneg

TolPCG Termination tolerance on the
PCG iteration.

L fmincon, fminunc,
fsolve, lsqcurvefit,
lsqlin, lsqnonlin,
quadprog

TolX Termination tolerance on x. B All but linprog and
lsqlin

TypicalX Typical x values. L fmincon, fminunc,
fsolve, lsqcurvefit,
lsqlin, lsqnonlin,
quadprog

Table 4-3:  Optimization Options Parameters (Continued)

Parameter Name Description L, M, B Used by Functions
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4fgoalattainPurpose Solve multiobjective goal attainment problem

where x, weight, goal, b, beq, lb, and ub are vectors, A and Aeq are matrices,
c(x), ceq(x), and F(x) are functions that return vectors. F(x), c(x), and ceq(x) can
be nonlinear functions.

Syntax x = fgoalattain(fun,x0,goal,weight)
x = fgoalattain(fun,x0,goal,weight,A,b)
x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq)
x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub)
x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon)
x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,...

lb,ub,nonlcon,options)
x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,...

lb,ub,nonlcon,options,P1,P2,...)
[x,fval] = fgoalattain(...)
[x,fval,attainfactor] = fgoalattain(...)
[x,fval,attainfactor,exitflag] = fgoalattain(...)
[x,fval,attainfactor,exitflag,output] = fgoalattain(...)
[x,fval,attainfactor,exitflag,output,lambda] = fgoalattain(...)

Description fgoalattain solves the goal attainment problem, which is one formulation for
minimizing a multiobjective optimization problem.

x = fgoalattain(fun,x0,goal,weight) tries to make the objective functions
supplied by fun attain the goals specified by goal by varying x, starting at x0,
with weight specified by weight.

x = fgoalattain(fun,x0,goal,weight,A,b) solves the goal attainment
problem subject to the linear inequalities A*x <= b.

γ
x,γ

minimize such that F x( ) weight γ⋅– goal≤
c x( ) 0≤

ceq x( ) 0=

A x⋅ b≤

Aeq x⋅ beq=

lb x ub≤ ≤
4-14
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x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq) solves the goal
attainment problem subject to the linear equalities Aeq*x = beq as well. Set
A=[] and b=[] if no inequalities exist.

x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub) defines a set of
lower and upper bounds on the design variables, x, so that the solution is
always in the range lb <= x <= ub.

x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon)
subjects the goal attainment problem to the nonlinear inequalities c(x) or
nonlinear equality constraints ceq(x) defined in nonlcon. fgoalattain
optimizes such that c(x) <= 0 and ceq(x) = 0. Set lb=[] and/or ub=[] if no
bounds exist.

x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon,... 
options) minimizes with the optimization parameters specified in the
structure options.

x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon,... 
options,P1,P2,...) passes the problem-dependent parameters P1, P2, etc.,
directly to the functions fun and nonlcon. Pass empty matrices as placeholders
for A, b, Aeq, beq, lb, ub, nonlcon, and options if these arguments are not
needed.

[x,fval] = fgoalattain(...) returns the values of the objective functions
computed in fun at the solution x.

[x,fval,attainfactor] = fgoalattain(...) returns the attainment factor
at the solution x.

[x,fval,attainfactor,exitflag] = fgoalattain(...) returns a value
exitflag that describes the exit condition of fgoalattain.

[x,fval,attainfactor,exitflag,output] = fgoalattain(...) returns a
structure output that contains information about the optimization.

[x,fval,attainfactor,exitflag,output,lambda] = fgoalattain(...)
returns a structure lambda whose fields contain the Lagrange multipliers at
the solution x.
4-15



fgoalattain
Arguments The arguments passed into the function are described in Table 4-1. The
arguments returned by the function are described in Table 4-2. Details
relevant to fgoalattain are included below for fun, goal, nonlcon, options,
weight, attainfactor, exitflag, lambda, and output.

fun The function to be minimized. fun takes a vector x and returns a
vector F of the objective functions evaluated at x. You can specify
fun to be an inline object. For example,

fun = inline('sin(x.*x)');

Alternatively, fun can be a string containing the name of a function
(an M-file, a built-in function, or a MEX-file). If fun='myfun' then
the M-file function myfun.m would have the form

function F = myfun(x)
F = ... % Compute function values at x

To make an objective function as near as possible to a goal value,
(i.e., neither greater than nor less than) set
options.GoalsExactAchieve to the number of objectives required
to be in the neighborhood of the goal values. Such objectives must
be partitioned into the first elements of the vector F returned by
fun.

If the gradient of the objective function can also be computed and
options.GradObj is 'on', as set by

options = optimset('GradObj','on')

then the function fun must return, in the second output argument,
the gradient value G, a matrix, at x. Note that by checking the value
of nargout the function can avoid computing G when 'myfun' is
called with only one output argument (in the case where the
optimization algorithm only needs the value of F but not G):

function [F,G] = myfun(x)
F = ... % compute the function values at x
if nargout > 1 % two output arguments

G = ... % gradients evaluated at x
end
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The gradient is the partial derivatives dF/dx of each F at the point
x. If F is a vector of length m and x has length n, then the gradient
G of F(x) is an n-by-m matrix where G(i,j) is the partial derivative
of F(j) with respect to x(i) (i.e., the jth column of G is the gradient
of the jth objective function F(j)).

goal Vector of values that the objectives attempt to attain. The vector is
the same length as the number of objectives F returned by fun.
fgoalattain attempts to minimize the values in the vector F to
attain the goal values given by goal.

nonlcon The function that computes the nonlinear inequality constraints
c(x) <=0 and nonlinear equality constraints ceq(x)=0. nonlcon is
a string containing the name of a function (an M-file, a built-in, or
a MEX-file). nonlcon takes a vector x and returns two arguments,
a vector c of the nonlinear inequalities evaluated at x and a vector
ceq of the nonlinear equalities evaluated at x. For example, if
nonlcon=’mycon’ then the M-file mycon.m would have the form

function [c,ceq] = mycon(x)
c = ... % Compute nonlinear inequalities at x
ceq = ... % Compute the nonlinear equalities at x

If the gradients of the constraints can also be computed and
options.GradConstr is 'on', as set by

options = optimset('GradConstr','on')

then the function nonlcon must also return, in the third and fourth
output arguments, GC, the gradient of c(x), and GCeq, the gradient
of ceq(x). Note that by checking the value of nargout the function
can avoid computing GC and GCeq when nonlcon is called with only
two output arguments (in the case where the optimization
algorithm only needs the values of c and ceq but not GC and GCeq):

function [c,ceq,GC,GCeq] = mycon(x)
c = ... % nonlinear inequalities at x
ceq = ... % nonlinear equalities at x
if nargout > 2 % nonlcon called with 4 outputs

GC = ... % gradients of the inequalities
GCeq = ... % gradients of the equalities

end
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If nonlcon returns a vector c of m components and x has length n,
then the gradient GC of c(x) is an n-by-m matrix, where GC(i,j) is
the partial derivative of c(j) with respect to x(i) (i.e., the jth
column of GC is the gradient of the jth inequality constraint c(j)).
Likewise, if ceq has p components, the gradient GCeq of ceq(x) is
an n-by-p matrix, where GCeq(i,j) is the partial derivative of
ceq(j) with respect to x(i) (i.e., the jth column of GCeq is the
gradient of the jth equality constraint ceq(j)).

options Optimization parameter options. You can set or change the values
of these parameters using the optimset function.

• DerivativeCheck – Compare user-supplied derivatives
(gradients of objective or constraints) to finite-differencing
derivatives.

• Diagnostics – Print diagnostic information about the function
to be minimized or solved.

• DiffMaxChange – Maximum change in variables for
finite-difference gradients.

• DiffMinChange – Minimum change in variables for
finite-difference gradients.

• Display – Level of display. 'off' displays no output; 'iter'
displays output at each iteration; 'final' displays just the final
output.

• GoalExactAchieve – Specifies the number of goals to “just”
achieve, that is, do not try to over- or underachieve.

• GradConstr – Gradient for the constraints defined by user. See
the description of nonlcon under the Arguments section above to
see how to define the gradient in nonlcon.

• GradObj – Gradient for the objective function defined by user.
See the description of fun under the Arguments section above to
see how to define the gradient in fun. The gradient must be
provided to use the large-scale method. It is optional for the
medium-scale method.

• MaxFunEvals – Maximum number of function evaluations
allowed.
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• MaxIter – Maximum number of iterations allowed.

• MeritFunction – Use goal attainment/minimax merit function if
set to 'multiobj'. Use fmincon merit function if set to
'singleobj'.

• TolCon – Termination tolerance on the constraint violation.

• TolFun – Termination tolerance on the function value.

• TolX – Termination tolerance on x.

weight A weighting vector to control the relative under-attainment or
over-attainment of the objectives in fgoalattain. When the values
of goal are all nonzero, to ensure the same percentage of under- or
over-attainment of the active objectives, set the weighting function
to abs(goal). (The active objectives are the set of objectives that
are barriers to further improvement of the goals at the solution.)

Note:  Setting weight=abs(goal) when any of the goal values
are zero will cause that goal constraint to be treated like a hard
constraint rather than as a goal constraint.

When the weighting function weight is positive, fgoalattain
attempts to make the objectives less than the goal values. To make
the objective functions greater than the goal values, set weight to
be negative rather than positive. To make an objective function as
near as possible to a goal value, use the GoalsExactAchieve
parameter and put that objective as the first element of the vector
returned by fun (see the description of fun and options above).

attain-
factor

attainfactor is the amount of over- or underachievement of the
goals. If attainfactor is negative, the goals have been
over-achieved; if attainfactor is positive, the goals have been
under-achieved.
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Examples Consider a linear system of differential equations.

An output feedback controller, K, is designed producing a closed loop system

The eigenvalues of the closed loop system are determined from the matrices A,
B, C, and K using the command eig(A+B*K*C). Closed loop eigenvalues must lie
on the real axis in the complex plane to the left of the points [–5,–3,–1]. In
order not to saturate the inputs, no element in K can be greater than 4 or be less
than –4.

The system is a two-input, two-output, open loop, unstable system, with
state-space matrices.

exitflag Describes the exit condition:

• > 0 indicates that the function converged to a solution x.

• 0 indicates that the maximum number of function evaluations or
iterations was reached.

• < 0 indicates that the function did not converge to a solution.

lambda A structure containing the Lagrange multipliers at the solution x
(separated by constraint type):

• lambda.lower for the lower bounds lb

• lambda.upper for the upper bounds ub

• lambda.ineqlin for the linear inequalities

• lambda.eqlin for the linear equalities

• lambda.ineqnonlin for the nonlinear inequalities

• lambda.eqnonlin for the nonlinear equalities

output A structure whose fields contain information about the
optimization:

• output.iterations – The number of iterations taken.

• output.funcCount – The number of function evaluations.

• output.algorithm – The algorithm used.

x· A BKC+( )x Bu+=

y Cx=
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The set of goal values for the closed loop eigenvalues are initialized as

 goal = [–5,–3,–1];

To ensure the same percentage of under- or over-attainment in the active
objectives at the solution, the weighting matrix, weight, is set to abs(goal).

Starting with a controller, K = [–1,–1; –1,–1], first write an M-file, eigfun.m:

function F = eigfun(K,A,B,C)
F = sort(eig(A+B*K*C)); % Evaluate objectives

Next, enter system matrices and invoke an optimization routine:

A = [–0.5 0 0; 0 –2 10; 0 1 –2];
B = [1 0; –2 2; 0 1];
C = [1 0 0; 0 0 1]; 
K0 = [–1 –1; –1 –1]; % Initialize controller matrix
goal = [–5 –3 –1]; % Set goal values for the eigenvalues
weight = abs(goal) % Set weight for same percentage
lb = –4*ones(size(K0)); % Set lower bounds on the controller
ub = 4*ones(size(K0)); % Set upper bounds on the controller
options = optimset('Display','iter'); % Set display parameter
[K,fval,attainfactor] = fgoalattain('eigfun',K0,... 

goal,weight,[],[],[],[],lb,ub,[],options,A,B,C)

A
0.5– 0 0
0 2– 10
0 1 2–

= B
1 0
2– 2

0 1

= C
1 0 0

0 0 1

=
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This example can be run by using the demonstration script goaldemo. After
about 12 iterations, a solution is

Active constraints:
1
2
4
9
10

K = 
–4.0000 –0.2564
–4.0000 –4.0000

fval =
–6.9313
–4.1588
–1.4099

attainfactor = 
–0.3863

Discussion The attainment factor indicates that each of the objectives has been
over-achieved by at least 38.63% over the original design goals. The active
constraints, in this case constraints 1 and 2, are the objectives that are barriers
to further improvement and for which the percentage of over-attainment is met
exactly. Three of the lower bound constraints are also active.

In the above design, the optimizer tries to make the objectives less than the
goals. For a worst case problem where the objectives must be as near to the
goals as possible, set options.GoalsExactAchieve to the number of objectives
for which this is required.

Consider the above problem when you want all the eigenvalues to be equal to
the goal values. A solution to this problem is found by invoking fgoalattain
with options.GoalsExactAchieve set to 3.

options = optimset('GoalsExactAchieve',3);
[K,fval,attainfactor] = fgoalattain(...

eigfun,K0,goal,weight,[],[],[],[],lb,ub,[],options,A,B,C)
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After about seven iterations, a solution is

K = 
 –1.5954 1.2040

    –0.4201  –2.9046

fval =
–5.0000
–3.0000
–1.0000

attainfactor = 
   1.0859e–20

In this case the optimizer has tried to match the objectives to the goals. The
attainment factor (of 1.0859e–20) indicates that the goals have been matched
almost exactly.

Notes This problem has discontinuities when the eigenvalues become complex; this
explains why the convergence is slow. Although the underlying methods
assume the functions are continuous, the method is able to make steps toward
the solution since the discontinuities do not occur at the solution point. When
the objectives and goals are complex, fgoalattain tries to achieve the goals in
a least-squares sense.

Algorithm Multiobjective optimization concerns the minimization of a set of objectives
simultaneously. One formulation for this problem, and implemented in
fgoalattain, is the goal attainment problem of Gembicki[1]. This entails the
construction of a set of goal values for the objective functions. Multiobjective
optimization is discussed fully in the Introduction to Algorithms chapter of this
toolbox.

In this implementation, the slack variable is used as a dummy argument to
minimize the vector of objectives F(x) simultaneously; goal is a set of values
that the objectives attain. Generally, prior to the optimization, it is unknown
whether the objectives will even reach the goals (under attainment) or be
minimized less than the goals (over attainment). A weighting vector, weight,
controls the relative under-attainment or over-attainment of the objectives.

γ
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fgoalattain uses a Sequential Quadratic Programming (SQP) method, which
is described fully in the Introduction to Algorithms chapter. Modifications are
made to the line search and Hessian. In the line search an exact merit function
(see [5] and [6]) is used together with the merit function proposed by [2, 3]. The
line search is terminated when either merit function shows improvement. A
modified Hessian, which takes advantage of special structure of this problem,
is also used (see [5] and [6]). A full description of the modifications used is found
in the “Goal Attainment Method” section of the Introduction to Algorithms
chapter. Setting options.MeritFunction = 'singleobj' uses the merit
function and Hessian used in fmincon.

attainfactor contains the value of γ at the solution. A negative value of γ
indicates over-attainment in the goals.

See also the “SQP Implementation” section in the Introduction to Algorithms
chapter for more details on the algorithm used and the types of procedures
printed under the Procedures heading for the options.Display = 'iter'
setting.

Limitations The objectives must be continuous. fgoalattain may give only local solutions.

See Also fmincon, fminimax, optimset
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4fminbndPurpose Find the minimum of a function of one variable on a fixed interval

where x, x1, and x2 are scalars and f(x) is a function that returns a scalar.

Syntax x = fminbnd(fun,x1,x2)
x = fminbnd(fun,x1,x2,options)
x = fminbnd(fun,x1,x2,options,P1,P2,...)
[x,fval] = fminbnd(...)
[x,fval,exitflag] = fminbnd(...)
[x,fval,exitflag,output] = fminbnd(...)

Description fminbnd finds the minimum of a function of one variable within a fixed
interval.

x = fminbnd(fun,x1,x2) returns a value x that is a local minimizer of the
scalar valued function that is described in fun in the interval x1 < x < x2.

x = fminbnd(fun,x1,x2,options) minimizes with the optimization
parameters specified in the structure options.

x = fminbnd(fun,x1,x2,options,P1,P2,...) provides for additional
arguments, P1, P2, etc., which are passed to the objective function, fun. Use
options=[] as a placeholder if no options are set.

[x,fval] = fminbnd(...) returns the value of the objective function
computed in fun at the solution x.

[x,fval,exitflag] = fminbnd(...) returns a value exitflag that describes
the exit condition of fminbnd.

[x,fval,exitflag,output] = fminbnd(...) returns a structure output that
contains information about the optimization.

Arguments The arguments passed into the function are described in Table 4-1. The
arguments returned by the function are described in Table 4-2. Details

f x( )
x

min such that x1 x x2< <
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relevant to fminbnd are included below for fun, options, exitflag, and
output.

fun The function to be minimized. fun takes a scalar x and returns a
scalar value f of the objective function evaluated at x. You can
specify fun to be an inline object. For example,

x = fminbnd(inline('sin(x*x)'),x0)

Alternatively, fun can be a string containing the name of a function
(an M-file, a built-in function, or a MEX-file). If fun='myfun' then
the M-file function myfun.m would have the form

function f = myfun(x)
f = ... % Compute function value at x

options Optimization parameter options. You can set or change the values
of these parameters using the optimset function. fminbnd uses
these options structure fields:

• Display – Level of display. 'off' displays no output; 'iter'
displays output at each iteration; 'final' displays just the final
output.

• MaxFunEvals – Maximum number of function evaluations
allowed.

• MaxIter – Maximum number of iterations allowed.

• TolX – Termination tolerance on x.

exitflag Describes the exit condition:

• > 0 indicates that the function converged to a solution x.

• 0 indicates that the maximum number of function evaluations or
iterations was reached.

• < 0 indicates that the function did not converge to a solution.

output A structure whose fields contain information about the
optimization:

• output.iterations – The number of iterations taken.

• output.algorithm – The algorithm used.

• output.funcCount – The number of function evaluations.
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Examples A minimum of sin(x) occurs at

x = fminbnd('sin',0,2*pi)
x = 

4.7124

The value of the function at the minimum is

y = sin(x)
y = 

–1.0000

To find the minimum of the function

on the interval (0,5), first write an M-file:

function f = myfun(x)
f = (x–3).^2 – 1;

Next, call an optimization routine:

x = fminbnd('myfun',0,5)

This generates the solution

x =
3

The value at the minimum is

y = f(x)
y =

–1

Algorithm fminbnd is an M-file. The algorithm is based on golden section search and
parabolic interpolation. A Fortran program implementing the same algorithm
is given in [1].

Limitations The function to be minimized must be continuous. fminbnd may only give local
solutions.

f x( ) x 3–( )2 1–=
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fminbnd often exhibits slow convergence when the solution is on a boundary of
the interval. In such a case, fmincon often gives faster and more accurate
solutions.

fminbnd only handles real variables.

See Also fminsearch, fmincon, fminunc, optimset, inline

References [1] Forsythe, G.E., M.A. Malcolm, and C.B. Moler, Computer Methods for
Mathematical Computations, Prentice Hall, 1976.
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4fminconPurpose Find the minimum of a constrained nonlinear multivariable function

where x, b, beq, lb, and ub are vectors, A and Aeq are matrices, c(x) and ceq(x)
are functions that return vectors, and f(x) is a function that returns a scalar.
f(x), c(x), and ceq(x) can be nonlinear functions.

Syntax x = fmincon(fun,x0,A,b)
x = fmincon(fun,x0,A,b,Aeq,beq)
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub)
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options,P1,P2, ...)
[x,fval] = fmincon(...)
[x,fval,exitflag] = fmincon(...)
[x,fval,exitflag,output] = fmincon(...)
[x,fval,exitflag,output,lambda] = fmincon(...)
[x,fval,exitflag,output,lambda,grad] = fmincon(...)
[x,fval,exitflag,output,lambda,grad,hessian] = fmincon(...)

Description fmincon finds the constrained minimum of a scalar function of several
variables starting at an initial estimate. This is generally referred to as
constrained nonlinear optimization or nonlinear programming.

x = fmincon(fun,x0,A,b) starts at x0 and finds a minimum x to the function
described in fun subject to the linear inequalities A*x <= b. x0 can be a scalar,
vector, or matrix.

x = fmincon(fun,x0,A,b,Aeq,beq) minimizes fun subject to the linear
equalities Aeq*x = beq as well as A*x <= b. Set A=[] and b=[] if no
inequalities exist.

f x( )
x

min subject to c x( ) 0≤
ceq x( ) 0=

A x⋅ b≤

Aeq x⋅ beq≤

lb x ub≤ ≤
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x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub) defines a set of lower and upper
bounds on the design variables, x, so that the solution is always in the range
lb <= x <= ub. Set Aeq=[] and beq=[] if no equalities exist.

x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon) subjects the
minimization to the nonlinear inequalities c(x) or equalities ceq(x) defined in
nonlcon. fmincon optimizes such that c(x) <= 0 and ceq(x) = 0. Set lb=[]
and/or ub=[] if no bounds exist.

x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options) minimizes
with the optimization parameters specified in the structure options.

x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options,P1,P2,...)
passes the problem-dependent parameters P1, P2, etc., directly to the functions
fun and nonlcon. Pass empty matrices as placeholders for A, b, Aeq, beq, lb, ub,
nonlcon, and options if these arguments are not needed.

[x,fval] = fmincon(...) returns the value of the objective function fun at
the solution x.

[x,fval,exitflag] = fmincon(...) returns a value exitflag that describes
the exit condition of fmincon.

[x,fval,exitflag,output] = fmincon(...) returns a structure outputwith
information about the optimization.

[x,fval,exitflag,output,lambda] = fmincon(...) returns a structure
lambda whose fields contain the Lagrange multipliers at the solution x.

[x,fval,exitflag,output,lambda,grad] = fmincon(...) returns the value
of the gradient of fun at the solution x.

[x,fval,exitflag,output,lambda,grad,hessian] = fmincon(...) returns
the value of the Hessian of fun at the solution x.

Arguments The arguments passed into the function are described in Table 4-1. The
arguments returned by the function are described in Table 4-2. Details
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relevant to fmincon are included below for fun, nonlcon, options, exitflag,
lambda, and output.

fun The function to be minimized. fun takes a vector x and returns a
scalar value f of the objective function evaluated at x. You can
specify fun to be an inline object. For example,

fun = inline('sin(x''*x)');

Alternatively, fun can be a string containing the name of a function
(an M-file, a built-in function, or a MEX-file). If fun='myfun' then
the M-file function myfun.m would have the form

function f = myfun(x)
f = ... % Compute function value at x

If the gradient of fun can also be computed and options.GradObj
is 'on', as set by

options = optimset('GradObj','on')

then the function fun must return, in the second output argument,
the gradient value g, a vector, at x. Note that by checking the value
of nargout the function can avoid computing g when fun is called
with only one output argument (in the case where the optimization
algorithm only needs the value of f but not g):

function [f,g] = myfun(x)
f = ... % compute the function value at x
if nargout > 1 % fun called with two output arguments

g = ... % compute the gradient evaluated at x
end

The gradient is the partial derivatives of f at the point x. That is,
the ith component of g is the partial derivative of f with respect to
the ith component of x.
4-32



fmincon
If the Hessian matrix can also be computed and options.Hessian
is 'on', i.e., options = optimset('Hessian','on'), then the
function fun must return the Hessian value H, a symmetric matrix,
at x in a third output argument. Note that by checking the value of
nargout we can avoid computing H when fun is called with only one
or two output arguments (in the case where the optimization
algorithm only needs the values of f and g but not H):

function [f,g,H] = myfun(x)
f = ... % Compute the objective function value at x
if nargout > 1 % fun called with two output arguments

g = ... % gradient of the function evaluated at x
if nargout > 2
H = ... % Hessian evaluated at x

end

The Hessian matrix is the second partial derivatives matrix of f at
the point x. That is, the (ith,jth) component of H is the second
partial derivative of f with respect to xi and xj, . The
Hessian is by definition a symmetric matrix.

nonlcon The function that computes the nonlinear inequality constraints
c(x)<=0 and nonlinear equality constraints ceq(x)=0. nonlcon is a
string containing the name of a function (an M-file, a built-in, or a
MEX-file). nonlcon takes a vector x and returns two arguments, a
vector c of the nonlinear inequalities evaluated at x and a vector
ceq of the nonlinear equalities evaluated at x. For example, if
nonlcon='mycon' then the M-file mycon.m would have the form

function [c,ceq] = mycon(x)
c = ... % Compute nonlinear inequalities at x
ceq = ... % Compute the nonlinear equalities at x

∂2f ∂xi∂xj⁄
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If the gradients of the constraints can also be computed and
options.GradConstr is 'on', as set by

options = optimset('GradConstr','on')

then the function nonlcon must also return, in the third and fourth
output arguments, GC, the gradient of c(x), and GCeq, the gradient
of ceq(x). Note that by checking the value of nargout the function
can avoid computing GC and GCeq when nonlcon is called with only
two output arguments (in the case where the optimization
algorithm only needs the values of c and ceq but not GC and GCeq):

function [c,ceq,GC,GCeq] = mycon(x)
c = ... % nonlinear inequalities at x
ceq = ... % nonlinear equalities at x
if nargout > 2 % nonlcon called with 4 outputs

GC = ... % gradients of the inequalities
GCeq = ... % gradients of the equalities

end

If nonlcon returns a vector c of m components and x has length n,
then the gradient GC of c(x) is an n-by-m matrix, where GC(i,j) is
the partial derivative of c(j) with respect to x(i) (i.e., the jth
column of GC is the gradient of the jth inequality constraint c(j)).
Likewise, if ceq has p components, the gradient GCeq of ceq(x) is
an n-by-p matrix, where GCeq(i,j) is the partial derivative of
ceq(j) with respect to x(i) (i.e., the jth column of GCeq is the
gradient of the jth equality constraint ceq(j)).
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options Optimization parameter options. You can set or change the values
of these parameters using the optimset function. Some parameters
apply to all algorithms, some are only relevant when using the
large-scale algorithm, and others are only relevant when using the
medium-scale algorithm.

We start by describing the LargeScale option since it states a
preference for which algorithm to use. It is only a preference since
certain conditions must be met to use the large-scale algorithm.
For fmincon, the gradient must be provided (see the description of
fun above to see how) or else the medium-scale algorithm will be
used.

• LargeScale – Use large-scale algorithm if possible when set to
'on'. Use medium-scale algorithm when set to 'off'.

Parameters used by both the large-scale and medium-scale
algorithms:

• Diagnostics – Print diagnostic information about the function
to be minimized.

• Display – Level of display. 'off' displays no output; 'iter'
displays output at each iteration; 'final' displays just the final
output.

• GradObj – Gradient for the objective function defined by user.
See the description of fun under the Arguments section above to
see how to define the gradient in fun. The gradient must be
provided to use the large-scale method. It is optional for the
medium-scale method.

• MaxFunEvals – Maximum number of function evaluations
allowed.

• MaxIter – Maximum number of iterations allowed.

• TolFun – Termination tolerance on the function value.

• TolCon – Termination tolerance on the constraint violation.

• TolX – Termination tolerance on x.
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Parameters used by the large-scale algorithm only:

• Hessian – Hessian for the objective function defined by user. See
the description of fun under the Arguments section above to see
how to define the Hessian in fun.

• HessPattern – Sparsity pattern of the Hessian for
finite-differencing. If it is not convenient to compute the sparse
Hessian matrix H in fun, the large-scale method in fmincon can
approximate H via sparse finite-differences (of the gradient)
provided the sparsity structure of H — i.e., locations of the
nonzeros — is supplied as the value for HessPattern. In the
worst case, if the structure is unknown, you can set HessPattern
to be a dense matrix and a full finite-difference approximation
will be computed at each iteration (this is the default). This can
be very expensive for large problems so it is usually worth the
effort to determine the sparsity structure.

• MaxPCGIter – Maximum number of PCG (preconditioned
conjugate gradient) iterations (see the Algorithm section below).

• PrecondBandWidth – Upper bandwidth of preconditioner for
PCG. By default, diagonal preconditioning is used (upper
bandwidth of 0). For some problems, increasing the bandwidth
reduces the number of PCG iterations.

• TolPCG – Termination tolerance on the PCG iteration.

• TypicalX – Typical x values.

Parameters used by the medium-scale algorithm only:

• DerivativeCheck – Compare user-supplied derivatives
(gradients of the objective and constraints) to finite-differencing
derivatives.

• DiffMaxChange – Maximum change in variables for
finite-difference gradients.

• DiffMinChange – Minimum change in variables for
finite-difference gradients.

• LineSearchType – Line search algorithm choice.
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Examples Find values of x that minimize , starting at the point
x = [10; 10; 10] and subject to the constraints

exitflag Describes the exit condition:

• > 0 indicates that the function converged to a solution x.

• 0 indicates that the maximum number of function evaluations or
iterations was reached.

• < 0 indicates that the function did not converge to a solution.

lambda A structure containing the Lagrange multipliers at the solution x
(separated by constraint type):

• lambda.lower for the lower bounds lb.

• lambda.upper for the upper bounds ub.

• lambda.ineqlin for the linear inequalities.

• lambda.eqlin for the linear equalities.

• lambda.ineqnonlin for the nonlinear inequalities.

• lambda.eqnonlin for the nonlinear equalities.

output A structure whose fields contain information about the
optimization:

• output.iterations – The number of iterations taken.

• output.funcCount – The number of function evaluations.

• output.algorithm – The algorithm used.

• output.cgiterations – The number of PCG iterations
(large-scale algorithm only).

• output.stepsize – The final step size taken (medium-scale
algorithm only).

• output.firstorderopt – A measure of first-order optimality
(large-scale algorithm only).

f x( ) x1x2x3–=

0 x1 2x2 2x3+ + 72≤ ≤
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First, write an M–file that returns a scalar value f of the function evaluated at
x:

function f = myfun(x)
f = –x(1) * x(2) * x(3);

Then rewrite the constraints as both less than or equal to a constant,

Since both constraints are linear, formulate them as the matrix inequality
where

Next, supply a starting point and invoke an optimization routine:

x0 = [10; 10; 10]; % Starting guess at the solution
[x,fval] = fmincon('myfun',x0,A,b)

After 66 function evaluations, the solution is

x =
24.0000
12.0000
12.0000

where the function value is

fval =
–3.4560e+03

and linear inequality constraints evaluate to be <= 0

A*x–b= 
–72
0

Notes Large-scale optimization. To use the large-scale method, the gradient must be
provided in fun (and options.GradObj set to 'on'). A warning is given if no

x1– 2x2– 2x3– 0≤

x1 2x2 2x3+ + 72≤

A x⋅ b≤

A 1– 2– 2–

1 2 2
= b 0

72
=
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gradient is provided and options.LargeScale is not 'off'. fmincon permits
g(x) to be an approximate gradient but this option is not recommended: the
numerical behavior of most optimization codes is considerably more robust
when the true gradient is used.

The large-scale method in fmincon is most effective when the matrix of second
derivatives, i.e., the Hessian matrix H(x), is also computed. However,
evaluation of the true Hessian matrix is not required. For example, if you can
supply the Hessian sparsity structure (using the HessPattern parameter in
options), then fmincon will compute a sparse finite-difference approximation
to H(x).

If x0 is not strictly feasible, fmincon chooses a new strictly feasible (centered)
starting point.

If components of x have no upper (or lower) bounds, then fmincon prefers that
the corresponding components of ub (or lb) be set to Inf (or –Inf for lb) as
opposed to an arbitrary but very large positive (or negative in the case of lower
bounds) number.

Several aspects of linearly constrained minimization should be noted:

• A dense (or fairly dense) column of matrix Aeq can result in considerable fill
and computational cost.

• fmincon removes (numerically) linearly dependent rows in Aeq; however,
this process involves repeated matrix factorizations and therefore can be
costly if there are many dependencies.

• Each iteration involves a sparse least-squares solve with matrix

where RT is the Cholesky factor of the preconditioner. Therefore, there is a
potential conflict between choosing an effective preconditioner and
minimizing fill in .

Medium-scale optimization. Better numerical results are likely if you specify
equalities explicitly using Aeq and beq, instead of implicitly using lb and ub.

If equality constraints are present and dependent equalities are detected and
removed in the quadratic subproblem, 'dependent' is printed under the
Procedures heading (when output is asked for using
options.Display = 'iter'). The dependent equalities are only removed

B AeqTR T–
=

B
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when the equalities are consistent. If the system of equalities is not consistent,
the subproblem is infeasible and 'infeasible' is printed under the
Procedures heading.

Algorithm Large-scale optimization. By default fminconwill choose the large-scale algorithm
if the user supplies the gradient in fun (and GradObj is 'on' in options) and if
only upper and lower bounds exists or only linear equality constraints exist.
This algorithm is a subspace trust region method and is based on the
interior-reflective Newton method described in [5],[6]. Each iteration involves
the approximate solution of a large linear system using the method of
preconditioned conjugate gradients (PCG). See the trust-region and
preconditioned conjugate gradient method descriptions in the Large-Scale
Algorithms chapter.

Medium-scale optimization. fmincon uses a Sequential Quadratic Programming
(SQP) method. In this method, a Quadratic Programming (QP) subproblem is
solved at each iteration. An estimate of the Hessian of the Lagrangian is
updated at each iteration using the BFGS formula (see fminunc, references [3,
6]).

A line search is performed using a merit function similar to that proposed by
[1] and [2, 3]. The QP subproblem is solved using an active set strategy similar
to that described in [4]. A full description of this algorithm is found in the
“Constrained Optimization” section of the Introduction to Algorithms chapter
of the toolbox manual.

See also the SQP implementation section in the Introduction to Algorithms
chapter for more details on the algorithm used.

Diagnostics Large-scale optimization. The large-scale code will not allow equal upper and
lower bounds. For example if lb(2)==ub(2), then fmincon gives the error:

Equal upper and lower bounds not permitted in this large-scale 
method.
Use equality constraints and the medium-scale method instead.

If you only have equality constraints you can still use the large-scale method.
But if you have both equalities and bounds, you must use the medium-scale
method.
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Limitations The function to be minimized and the constraints must both be continuous.
fmincon may only give local solutions.

When the problem is infeasible, fmincon attempts to minimize the maximum
constraint value.

The objective function and constraint function must be real-valued, that is they
cannot return complex values.

Large-scale optimization. To use the large-scale algorithm, the user must supply
the gradient in fun (and GradObj must be set 'on' in options) , and only upper
and lower bounds constraints may be specified, or only linear equality
constraints must exist and Aeq cannot have more rows than columns. Aeq is
typically sparse. See Table 1-4 for more information on what problem
formulations are covered and what information must be provided.

Currently, if the analytical gradient is provided in fun, the options parameter
DerivativeCheck cannot be used with the large-scale method to compare the
analytic gradient to the finite-difference gradient. Instead, use the
medium-scale method to check the derivative with options parameter MaxIter
set to 0 iterations. Then run the problem with the large-scale method.

References [1] Han, S.P., “A Globally Convergent Method for Nonlinear Programming,”
Journal of Optimization Theory and Applications, Vol. 22, p. 297, 1977.

[2] Powell, M.J.D., “The Convergence of Variable Metric Methods For
Nonlinearly Constrained Optimization Calculations,” Nonlinear Programming
3, (O.L. Mangasarian, R.R. Meyer, and S.M. Robinson, eds.) Academic Press,
1978.

[3] Powell, M.J.D., “A Fast Algorithm for Nonlineary Constrained
Optimization Calculations,” Numerical Analysis, ed. G.A. Watson, Lecture
Notes in Mathematics, Springer Verlag, Vol. 630, 1978.

[4] Gill, P.E., W. Murray, and M.H. Wright, Practical Optimization, Academic
Press, London, 1981.

[5] Coleman, T.F. and Y. Li, “On the Convergence of Reflective Newton
Methods for Large-Scale Nonlinear Minimization Subject to Bounds,”
Mathematical Programming, Vol. 67, Number 2, pp. 189-224, 1994.
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[6] Coleman, T.F. and Y. Li, “An Interior, Trust Region Approach for Nonlinear
Minimization Subject to Bounds,” SIAM Journal on Optimization, Vol. 6, pp.
418-445, 1996.

See Also fminbnd, fminsearch, fminunc, optimset
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4fminimaxPurpose Solve the minimax problem

where x, b, beq, lb, and ub are vectors, A and Aeq are matrices, c(x), ceq(x), and
F(x) are functions that return vectors. F(x), c(x), and ceq(x) can be nonlinear
functions.

Syntax x = fminimax(fun,x0)
x = fminimax(fun,x0,A,b)
x = fminimax(fun,x0,A,b,Aeq,beq)
x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub)
x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)
x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)
x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options,P1,P2,...)
[x,fval] = fminimax(...)
[x,fval,maxfval] = fminimax(...)
[x,fval,maxfval,exitflag] = fminimax(...)
[x,fval,maxfval,exitflag,output] = fminimax(...)
[x,fval,maxfval,exitflag,output,lambda] = fminimax(...)

Description fminimax minimizes the worst-case value of a set of multivariable functions,
starting at an initial estimate. The values may be subject to constraints. This
is generally referred to as the minimax problem.

x = fminimax(fun,x0) starts at x0 and finds a minimax solution x to the
functions described in fun.

x = fminimax(fun,x0,A,b) solves the minimax problem subject to the linear
inequalities A*x <= b.

Fi x( ){ }
Fi{ }

max
x

min such that c x( ) 0≤

ceq x( ) 0=

A x⋅ b≤

Aeq x⋅ beq=

lb x ub≤ ≤
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x = fminimax(fun,x,A,b,Aeq,beq) solves the minimax problem subject to
the linear equalities Aeq*x = beq as well. Set A=[] and b=[] if no inequalities
exist.

x = fminimax(fun,x,A,b,Aeq,beq,lb,ub) defines a set of lower and upper
bounds on the design variables, x, so that the solution is always in the range
lb <= x <= ub.

x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon) subjects the minimax
problem to the nonlinear inequalities c(x) or equality constraints ceq(x)
defined in nonlcon. fminimax optimizes such that c(x) <= 0 and ceq(x) = 0.
Set lb=[] and/or ub=[] if no bounds exist.

x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options) minimizes
with the optimization parameters specified in the structure options.

x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options,P1,P2,...)
passes the problem-dependent parameters P1, P2, etc., directly to the functions
fun and nonlcon. Pass empty matrices as placeholders for A, b, Aeq, beq, lb, ub,
nonlcon, and options if these arguments are not needed.

[x,fval] = fminimax(...) returns the value of the objective function fun at
the solution x.

[x,fval,maxfval] = fminimax(...) returns the maximum function value at
the solution x.

[x,fval,maxfval,exitflag] = fminimax(...) returns a value exitflag
that describes the exit condition of fminimax.

[x,fval,maxfval,exitflag,output] = fminimax(...) returns a structure
output with information about the optimization.

[x,fval,maxfval,exitflag,output,lambda] = fminimax(...) returns a
structure lambda whose fields contain the Lagrange multipliers at the solution
x.

Arguments The arguments passed into the function are described in Table 4-1. The
arguments returned by the function are described in Table 4-2. Details
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relevant to fminimax are included below for fun, nonlcon, options, exitflag,
lambda, maxfval, and output.

fun The function to be minimized. fun takes a vector x and returns a
vector F of the objective functions evaluated at x. You can specify
fun to be an inline object. For example,

fun = inline('sin(x.*x)');

Alternatively, fun can be a string containing the name of a function
(an M-file, a built-in function, or a MEX-file). If fun='myfun' then
the M-file function myfun.m would have the form

function F = myfun(x)
F = ... % Compute function values at x

To minimize the worst case absolute values of any of the elements
of the vector F(x) (i.e., min{max abs{F(x)} } ), partition those
objectives into the first elements of F and set options.MinAbsMax
to be the number of such objectives.

If the gradient of the objective function can also be computed and
options.GradObj is 'on', as set by

options = optimset('GradObj','on')

then the function fun must return, in the second output argument,
the gradient value G, a matrix, at x. Note that by checking the value
of nargout the function can avoid computing G when 'myfun' is
called with only one output argument (in the case where the
optimization algorithm only needs the value of F but not G):

function [F,G] = myfun(x)
F = ... % compute the function values at x
if nargout > 1 % two output arguments

G = ... % gradients evaluated at x
end

The gradient is the partial derivatives dF/dx of each F at the point
x. If F is a vector of length m and x has length n, then the gradient
G of F(x) is an n-by-m matrix where G(i,j) is the partial derivative
of F(j) with respect to x(i) (i.e., the jth column of G is the gradient
of the jth objective function F(j)).
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nonlcon The function that computes the nonlinear inequality constraints
c(x) <=0 and nonlinear equality constraints ceq(x)=0. nonlcon is
a string containing the name of a function (an M-file, a built-in, or
a MEX-file). nonlcon takes a vector x and returns two arguments,
a vector c of the nonlinear inequalities evaluated at x and a vector
ceq of the nonlinear equalities evaluated at x. For example, if
nonlcon='mycon' then the M-file mycon.m would have the form

function [c,ceq] = mycon(x)
c = ... % Compute nonlinear inequalities at x
ceq = ... % Compute the nonlinear equalities at x

If the gradients of the constraints can also be computed and
options.GradConstr is 'on', as set by

options = optimset('GradConstr','on')

then the function nonlcon must also return, in the third and fourth
output arguments, GC, the gradient of c(x), and GCeq, the gradient
of ceq(x). Note that by checking the value of nargout the function
can avoid computing GC and GCeq when nonlcon is called with only
two output arguments (in the case where the optimization
algorithm only needs the values of c and ceq but not GC and GCeq):

function [c,ceq,GC,GCeq] = mycon(x)
c = ... % nonlinear inequalities at x
ceq = ... % nonlinear equalities at x
if nargout > 2 % nonlcon called with 4 outputs

GC = ... % gradients of the inequalities
GCeq = ... % gradients of the equalities

end

If nonlcon returns a vector c of m components and x has length n,
then the gradient GC of c(x) is an n-by-m matrix, where GC(i,j) is
the partial derivative of c(j) with respect to x(i) (i.e., the jth
column of GC is the gradient of the jth inequality constraint c(j)).
Likewise, if ceq has p components, the gradient GCeq of ceq(x) is
an n-by-p matrix, where GCeq(i,j) is the partial derivative of
ceq(j) with respect to x(i) (i.e., the jth column of GCeq is the
gradient of the jth equality constraint ceq(j)).
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options Optimization parameter options. You can set or change the values
of these parameters using the optimset function.

• DerivativeCheck – Compare user-supplied derivatives
(gradients of the objective or constraints) to finite-differencing
derivatives.

• Diagnostics – Print diagnostic information about the function
to be minimized or solved.

• DiffMaxChange – Maximum change in variables for
finite-difference gradients.

• DiffMinChange – Minimum change in variables for
finite-difference gradients.

• Display – Level of display. 'off' displays no output; 'iter'
displays output at each iteration; 'final' displays just the final
output.

• GradConstr – Gradient for the constraints defined by user. See
the description of nonlcon under the Arguments section above to
see how to define the gradient in nonlcon.

• GradObj – Gradient for the objective function defined by user.
See the description of fun under the Arguments section above to
see how to define the gradient in fun. The gradient must be
provided to use the large-scale method. It is optional for the
medium-scale method.

• MaxFunEvals – Maximum number of function evaluations
allowed.

• MaxIter – Maximum number of iterations allowed.

• MeritFunction – Use goal attainment/minimax merit function if
set to 'multiobj'. Use fmincon merit function if set to
'singleobj'.

• MinAbsMax – Number of F(x) to minimize the worst case absolute
values.

• TolCon – Termination tolerance on the constraint violation.

• TolFun – Termination tolerance on the function value.

• TolX – Termination tolerance on x.
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Examples Find values of x that minimize the maximum value of

exitflag Describes the exit condition:

• > 0 indicates that the function converged to a solution x.

• 0 indicates that the maximum number of function evaluations or
iterations was reached.

• < 0 indicates that the function did not converge to a solution.

lambda A structure containing the Lagrange multipliers at the solution x
(separated by constraint type):

• lambda.lower for the lower bounds lb

• lambda.upper for the upper bounds ub

• lambda.ineqlin for the linear inequalities

• lambda.eqlin for the linear equalities

• lambda.ineqnonlin for the nonlinear inequalities

• lambda.eqnonlin for the nonlinear equalities

maxfval Maximum of the function values evaluated at the solution x, that
is, maxfval = max{fun(x)}.

output A structure whose fields contain information about the
optimization:

• output.iterations – The number of iterations taken.

• output.funcCount – The number of function evaluations.

• output.algorithm – The algorithm used.

f1 x( ) , f2 x( ) , f3 x( ) , f4 x( ) , f5 x( )
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where

First, write an M-file that computes the five functions at x:

function f = myfun(x)
f(1)= 2*x(1)^2+x(2)^2–48*x(1)–40*x(2)+304; %Objectives
f(2)= –x(1)^2 – 3*x(2)^2;
f(3)= x(1) + 3*x(2) –18;
f(4)= –x(1)– x(2);
f(5)= x(1) + x(2) – 8;

Next, invoke an optimization routine:

x0 = [0.1; 0.1]; % Make a starting guess at solution
[x,fval] = fminimax('myfun',x0)

After seven iterations, the solution is

x = 
4.0000
4.0000

fval =
0.0000  –64.0000  –2.0000  –8.0000  –0.0000

Notes The number of objectives for which the worst case absolute values of F are
minimized is set in options.MinAbsMax. Such objectives should be partitioned
into the first elements of F.

For example, consider the above problem, which requires finding values of x
that minimize the maximum absolute value of

f1 x( ) 2x1
2 x2

2 48x1 40x2 304+––+=

f2 x( ) x2
2

– 3x2
2

–=

f3 x( ) x1 3x2 18–+=

f4 x( ) x1– x2–=

f5 x( ) x1 x2 8.–+=

f1 x( ) , f2 x( ) , f3 x( ) , f4 x( ) , f5 x( )
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This is solved by invoking fminimax with the commands

x0 = [0.1; 0.1];  % Make a starting guess at the solution
options = optimset('MinAbsMax',5); % Minimize absolute values
[x,fval] = fminimax(fun,x0,[],[],[],[],[],[],[],options);

After seven iterations, the solution is

x = 
4.9256
2.0796

fval = 
37.2356 –37.2356 –6.8357 –7.0052 –0.9948

If equality constraints are present and dependent equalities are detected and
removed in the quadratic subproblem, 'dependent' is printed under the
Procedures heading (when the output option is options.Display='iter').
The dependent equalities are only removed when the equalities are consistent.
If the system of equalities is not consistent, the subproblem is infeasible and
'infeasible' is printed under the Procedures heading.

Algorithm fminimax uses a Sequential Quadratic Programming (SQP) method [3].
Modifications are made to the line search and Hessian. In the line search an
exact merit function (see [4] and [5]) is used together with the merit function
proposed by [1] and [2]. The line search is terminated when either merit
function shows improvement. A modified Hessian that takes advantage of
special structure of this problem is also used. Setting
options.MeritFunction = 'singleobj' uses the merit function and Hessian
used in fmincon.

See also the SQP implementation section in the Introduction to Algorithms
chapter for more details on the algorithm used and the types of procedures
printed under the Procedures heading for options.Display='iter' setting.

Limitations The function to be minimized must be continuous. fminimax may only give
local solutions.

See Also optimset, fgoalattain, lsqnonlin

References [1] Han, S.P., “A Globally Convergent Method For Nonlinear Programming,” J.
of Optimization Theory and Applications, Vol. 22, p. 297, 1977.
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[2] Powell, M.J.D., “A Fast Algorithm for Nonlineary Constrained
Optimization Calculations,” Numerical Analysis, ed. G.A. Watson, Lecture
Notes in Mathematics, Springer Verlag, Vol. 630, 1978.

[3] Brayton, R.K., S.W. Director, G.D. Hachtel, and L.Vidigal, “A New
Algorithm for Statistical Circuit Design Based on Quasi–Newton Methods and
Function Splitting,” IEEE Trans. Circuits and Systems, Vol. CAS-26, pp.
784-794, Sept. 1979.

[4] Grace, A.C.W., “Computer–Aided Control System Design Using
Optimization Techniques,” Ph.D. Thesis, University of Wales, Bangor,
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[5] Madsen, K. and H. Schjaer-Jacobsen, “Algorithms for Worst Case Tolerance
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4fminsearchPurpose Find the minimum of an unconstrained multivariable function

where x is a vector and f(x) is a function that returns a scalar.

Syntax x = fminsearch(fun,x0)
x = fminsearch(fun,x0,options)
x = fminsearch(fun,x0,options,P1,P2,...)
[x,fval] = fminsearch(...)
[x,fval,exitflag] = fminsearch(...)
[x,fval,exitflag,output] = fminsearch(...)

Description fminsearch finds the minimum of a scalar function of several variables,
starting at an initial estimate. This is generally referred to as unconstrained
nonlinear optimization.

x = fminsearch(fun,x0) starts at the point x0 and finds a local minimum x of
the function described in fun. x0 can be a scalar, vector, or matrix.

x = fminsearch(fun,x0,options) minimizes with the optimization
parameters specified in the structure options.

x = fminsearch(fun,x0,options,P1,P2,...) passes the problem-dependent
parameters P1, P2, etc., directly to the function fun. Pass an empty matrix for
options to use the default values for options.

[x,fval] = fminsearch(...) returns in fval the value of the objective
function fun at the solution x.

[x,fval,exitflag] = fminsearch(...) returns a value exitflag that
describes the exit condition of fminsearch.

[x,fval,exitflag,output] = fminsearch(...) returns a structure output
that contains information about the optimization.

Arguments The arguments passed into the function are described in Table 4-1. The
arguments returned by the function are described in Table 4-2. Details

f x( )
x

min
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relevant to fminsearch are included below for fun, options, exitflag, and
output.

fun The function to be minimized. fun takes a vector x and returns a
scalar value f of the objective function evaluated at x. You can
specify fun to be an inline object. For example,

x = fminsearch(inline('sin(x''*x)'),x0)

Alternatively, fun can be a string containing the name of a function
(an M-file, a built-in function, or a MEX-file). If fun='myfun' then
the M-file function myfun.m would have the form

function f = myfun(x)
f = ... % Compute function value at x

options Optimization parameter options. You can set or change the values
of these parameters using the optimset function.fminsearch uses
these options parameters:

• Display – Level of display. 'off' displays no output; 'iter'
displays output at each iteration; 'final' displays just the final
output.

• MaxFunEvals – Maximum number of function evaluations
allowed.

• MaxIter – Maximum number of iterations allowed.

• TolFun – Termination tolerance on the function value.

• TolX – Termination tolerance on x.

exitflag Describes the exit condition:

• > 0 indicates that the function converged to a solution x.

• 0 indicates that the maximum number of function evaluations or
iterations was reached.

• < 0 indicates that the function did not converge to a solution.
4-53



fminsearch
Examples Minimize the one-dimensional function f(x) = sin(x) + 3.

To use an M-file, i.e., fun = 'myfun', create a file myfun.m:

function f = myfun(x)
f = sin(x) + 3;

Then call fminsearch to find a minimum of fun near 2:

x = fminsearch('myfun',2)

To minimize the function f(x) = sin(x) + 3 using an inline object:

f = inline('sin(x)+3');
x = fminsearch(f,2);

Algorithms fminsearch uses the simplex search method of [1]. This is a direct search
method that does not use numerical or analytic gradients as in fminunc.

If n is the length of x, a simplex in n-dimensional space is characterized by the
n+1 distinct vectors that are its vertices. In two-space, a simplex is a triangle;
in three-space, it is a pyramid. At each step of the search, a new point in or near
the current simplex is generated. The function value at the new point is
compared with the function’s values at the vertices of the simplex and, usually,
one of the vertices is replaced by the new point, giving a new simplex. This step
is repeated until the diameter of the simplex is less than the specified
tolerance.

fminsearch is generally less efficient than fminunc for problems of order
greater than two. However, when the problem is highly discontinuous,
fminsearch may be more robust.

Limitations fminsearch can often handle discontinuity, particularly if it does not occur
near the solution. fminsearch may only give local solutions.

output A structure whose fields contain information about the
optimization:

• output.iterations – The number of iterations taken.

• output.algorithm – The algorithm used.

• output.funcCount – The number of function evaluations.
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fminsearch only minimizes over the real numbers, that is, x must only consist
of real numbers and f(x) must only return real numbers. When x has complex
variables, they must be split into real and imaginary parts.

Note:  fminsearch is not the preferred choice for solving problems that are
sums-of-squares, that is, of the form: .
Instead use the lsqnonlin function, which has been optimized for problems of
this form.

See Also fminbnd, fminunc, optimset, inline

References [1] Lagarias, J.C., J.A. Reeds, M.H. Wright, P.E. Wright, “Convergence
Properties of the Nelder-Mead Simplex Algorithm in Low Dimensions,” to
appear in the SIAM Journal of Optimization.

f x( )min f1 x( )2 f2 x( )2 f3 x( )2 L+ + +=
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4fminuncPurpose Find the minimum of an unconstrained multivariable function

where x is a vector and f(x) is a function that returns a scalar.

Syntax x = fminunc(fun,x0)
x = fminunc(fun,x0,options)
x = fminunc(fun,x0,options,P1,P2,...)
[x,fval] = fminunc(...)
[x,fval,exitflag] = fminunc(...)
[x,fval,exitflag,output] = fminunc(...)
[x,fval,exitflag,output,grad] = fminunc(...)
[x,fval,exitflag,output,grad,hessian] = fminunc(...)

Description fminunc finds the minimum of a scalar function of several variables, starting
at an initial estimate. This is generally referred to as unconstrained nonlinear
optimization.

x = fminunc(fun,x0) starts at the point x0 and finds a local minimum x of the
function described in fun. x0 can be a scalar, vector, or matrix.

x = fminunc(fun,x0,options) minimizes with the optimization parameters
specified in the structure options.

x = fminunc(fun,x0,options,P1,P2,...) passes the problem-dependent
parameters P1, P2, etc., directly to the function fun. Pass an empty matrix for
options to use the default values for options.

[x,fval] = fminunc(...) returns in fval the value of the objective function
fun at the solution x.

[x,fval,exitflag] = fminunc(...) returns a value exitflag that describes
the exit condition.

[x,fval,exitflag,output] = fminunc(...) returns a structure output that
contains information about the optimization.

f x( )
x

min
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[x,fval,exitflag,output,grad] = fminunc(...) returns in grad the value
of the gradient of fun at the solution x.

[x,fval,exitflag,output,grad,hessian] = fminunc(...) returns in
hessian the value of the Hessian of the objective function fun at the solution x.

Arguments The arguments passed into the function are described in Table 4-1. The
arguments returned by the function are described in Table 4-2. Details
relevant to fminunc are included below for fun, options, exitflag, and
output.

fun The function to be minimized. fun takes a vector x and returns a
scalar value f of the objective function evaluated at x. You can
specify fun to be an inline object. For example,

x = fminunc(inline('sin(x''*x)'),x0)

Alternatively, fun can be a string containing the name of a function
(an M-file, a built-in function, or a MEX-file). If fun='myfun' then
the M-file function myfun.m would have the form

function f = myfun(x)
f = ... % Compute function value at x

If the gradient of fun can also be computed and options.GradObj
is 'on', as set by

options = optimset('GradObj','on')

then the function fun must return, in the second output argument,
the gradient value g, a vector, at x. Note that by checking the value
of nargout the function can avoid computing g when fun is called
with only one output argument (in the case where the optimization
algorithm only needs the value of f but not g):

function [f,g] = myfun(x)
f = ... % compute the function value at x
if nargout > 1 % fun called with 2 output arguments

g = ... % compute the gradient evaluated at x
end
4-57



fminunc
The gradient is the partial derivatives of f at the point x.
That is, the ith component of g is the partial derivative of f with
respect to the ith component of x.

If the Hessian matrix can also be computed and options.Hessian
is 'on', i.e., options = optimset('Hessian','on'), then the
function fun must return the Hessian value H, a symmetric matrix,
at x in a third output argument. Note that by checking the value of
nargout we can avoid computing H when fun is called with only one
or two output arguments (in the case where the optimization
algorithm only needs the values of f and g but not H):

function [f,g,H] = myfun(x)
f = ... % Compute the objective function value at x
if nargout > 1 % fun called with two output arguments

g = ... % gradient of the function evaluated at x
if nargout > 2
H = ... % Hessian evaluated at x

end

The Hessian matrix is the second partial derivatives matrix of f at
the point x. That is, the (ith,jth) component of H is the second
partial derivative of f with respect to xi and xj, . The
Hessian is by definition a symmetric matrix.

options Optimization parameter options. You can set or change the values
of these parameters using the optimset function. Some
parameters apply to all algorithms, some are only relevant when
using the large-scale algorithm, and others are only relevant when
using the medium-scale algorithm.

We start by describing the LargeScale option since it states a
preference for which algorithm to use. It is only a preference since
certain conditions must be met to use the large-scale algorithm.
For fminunc, the gradient must be provided (see the description of
fun above to see how) or else the medium-scale algorithm will be
used.

• LargeScale – Use large-scale algorithm if possible when set to
'on'. Use medium-scale algorithm when set to 'off'.

f∂ x∂⁄

∂2f ∂xi∂xj⁄
4-58



fminunc
Parameters used by both the large-scale and medium-scale
algorithms:

• Diagnostics – Print diagnostic information about the function
to be minimized.

• Display – Level of display. 'off' displays no output; 'iter'
displays output at each iteration; 'final' displays just the final
output.

• GradObj – Gradient for the objective function defined by user.
See the description of fun under the Arguments section above to
see how to define the gradient in fun. The gradient must be
provided to use the large-scale method. It is optional for the
medium-scale method.

• MaxFunEvals – Maximum number of function evaluations
allowed.

• MaxIter – Maximum number of iterations allowed.

• TolFun – Termination tolerance on the function value.

• TolX – Termination tolerance on x.

Parameters used by the large-scale algorithm only:

• Hessian – Hessian for the objective function defined by user. See
the description of fun under the Arguments section above to see
how to define the Hessian in fun.

• HessPattern – Sparsity pattern of the Hessian for
finite-differencing. If it is not convenient to compute the sparse
Hessian matrix H in fun, the large-scale method in fminunc can
approximate H via sparse finite-differences (of the gradient)
provided the sparsity structure of H — i.e., locations of the
nonzeros — is supplied as the value for HessPattern. In the
worst case, if the structure is unknown, you can set HessPattern
to be a dense matrix and a full finite-difference approximation
will be computed at each iteration (this is the default). This can
be very expensive for large problems so it is usually worth the
effort to determine the sparsity structure.
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• MaxPCGIter – Maximum number of PCG (preconditioned
conjugate gradient) iterations (see the Algorithm section below).

• PrecondBandWidth – Upper bandwidth of preconditioner for
PCG. By default, diagonal preconditioning is used (upper
bandwidth of 0). For some problems, increasing the bandwidth
reduces the number of PCG iterations.

• TolPCG – Termination tolerance on the PCG iteration.

• TypicalX – Typical x values.

Parameters used by the medium-scale algorithm only:

• DerivativeCheck – Compare user-supplied derivatives
(gradient) to finite-differencing derivatives.

• DiffMaxChange – Maximum change in variables for
finite-difference gradients.

• DiffMinChange – Minimum change in variables for
finite-difference gradients.

• LineSearchType – Line search algorithm choice.

exitflag Describes the exit condition:

• > 0 indicates that the function converged to a solution x.

• 0 indicates that the maximum number of function evaluations or
iterations was reached.

• < 0 indicates that the function did not converge to a solution.
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Examples Minimize the function f(x) = 3*x1
2 + 2*x1*x2 + x2

2.

To use an M-file, i.e., fun = 'myfun', create a file myfun.m:

function f = myfun(x)
f = 3*x(1)^2 + 2*x(1)*x(2) + x(2)^2; % cost function

Then call fminunc to find a minimum of 'myfun' near [1,1]:

x0 = [1,1];
[x,fval] = fminunc('myfun',x0)

After a couple of iterations, the solution, x, and the value of the function at x,
fval, are returned:

x =
  1.0e–008 *

–0.7914    0.2260
fval =
  1.5722e–016

output A structure whose fields contain information about the
optimization:

• output.iterations – The number of iterations taken.

• output.funcCount – The number of function evaluations.

• output.algorithm – The algorithm used.

• output.cgiterations – The number of PCG iterations
(large-scale algorithm only).

• output.stepsize – The final step size taken (medium-scale
algorithm only).

• output.firstorderopt – A measure of first-order optimality:
the norm of the gradient at the solution x.
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To minimize this function with the gradient provided, modify the M-file
myfun.m so the gradient is the second output argument

function [f,g] = myfun(x)
f = 3*x(1)^2 + 2*x(1)*x(2) + x(2)^2; % cost function
if nargout > 1

g(1) = 6*x(1)+2*x(2);
g(2) = 2*x(1)+2*x(2);

end

and indicate the gradient value is available by creating an optimization options
structure with options.GradObj set to 'on' using optimset:

options = optimset('GradObj','on');
x0 = [1,1];
[x,fval] = fminunc('myfun',x0,options)

After several iterations the solution x and fval, the value of the function at x,
are returned:

x =
  1.0e–015 *

–0.6661         0
fval2 =
  1.3312e–030

To minimize the function f(x) = sin(x) + 3 using an inline object

f = inline('sin(x)+3');
x = fminunc(f,4)

which returns a solution

x =
    4.7124

Notes fminunc is not the preferred choice for solving problems that are
sums-of-squares, that is, of the form: .
Instead use the lsqnonlin function, which has been optimized for problems of
this form.

f x( )min f1 x( )2 f2 x( )2 f3 x( )2 L+ + +=
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To use the large-scale method, the gradient must be provided in fun (and
options.GradObj set to 'on'). A warning is given if no gradient is provided and
options.LargeScale is not 'off'.

Algorithms Large-scale optimization. By default fminuncwill choose the large-scale algorithm
if the user supplies the gradient in fun (and GradObj is 'on' in options). This
algorithm is a subspace trust region method and is based on the
interior-reflective Newton method described in [8],[9]. Each iteration involves
the approximate solution of a large linear system using the method of
preconditioned conjugate gradients (PCG). See the trust-region and
preconditioned conjugate gradient method descriptions in the Large-Scale
Algorithms chapter.

Medium-scale optimization. fminunc with options.LargeScale set to ’off’ uses
the BFGS Quasi-Newton method with a mixed quadratic and cubic line search
procedure. This quasi-Newton method uses the BFGS [1-4] formula for
updating the approximation of the Hessian matrix. The DFP [5,6,7] formula,
which approximates the inverse Hessian matrix, is selected by setting
options. HessUpdate to 'dfp' (and options.LargeScale to 'off'). A steepest
descent method is selected by setting options.HessUpdate to 'steepdesc'
(and options.LargeScale to 'off'), although this is not recommended.

The default line search algorithm, i.e., when options.LineSearchType is set to
'quadcubic', is a safeguarded mixed quadratic and cubic polynomial
interpolation and extrapolation method. A safeguarded cubic polynomial
method can be selected by setting options.LineSearchType to 'cubicpoly'.
This second method generally requires fewer function evaluations but more
gradient evaluations. Thus, if gradients are being supplied and can be
calculated inexpensively, the cubic polynomial line search method is
preferable. A full description of the algorithms is given in the Introduction to
Algorithms chapter.

Limitations The function to be minimized must be continuous.fminunc may only give local
solutions.

fminunc only minimizes over the real numbers, that is, x must only consist of
real numbers and f(x) must only return real numbers. When x has complex
variables, they must be split into real and imaginary parts.
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Large-scale optimization. To use the large-scale algorithm, the user must supply
the gradient in fun (and GradObj must be set 'on' in options). See Table 1-4
for more information on what problem formulations are covered and what
information must be provided.

Currently, if the analytical gradient is provided in fun, the options parameter
DerivativeCheck cannot be used with the large-scale method to compare the
analytic gradient to the finite-difference gradient. Instead, use the
medium-scale method to check the derivative with options parameter MaxIter
set to 0 iterations. Then run the problem again with the large-scale method.

See Also fminsearch, optimset, inline
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4fseminfPurpose Find minimum of a semi-infinitely constrained multivariable nonlinear
function

where x, b, beq, lb, and ub are vectors, A and Aeq are matrices, c(x), ceq(x), and
Ki(x,wi) are functions that return vectors, and f(x) is a function that returns a
scalar. f(x), c(x), and ceq(x) can be nonlinear functions. The vectors (or matrices)

are continuous functions of both x and an additional set of
variables . The variables are vectors of, at most,
length two.

Syntax x = fseminf(fun,x0,ntheta,seminfcon)
x = fseminf(fun,x0,ntheta,seminfcon,A,b)
x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq)
x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq,lb,ub)
x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq,lb,ub,options)
x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq,...

lb,ub,options,P1,P2,...)
[x,fval] = fseminf(...)
[x,fval,exitflag] = fseminf(...)
[x,fval,exitflag,output] = fseminf(...)
[x,fval,exitflag,output,lambda] = fseminf(...)

Description fseminf finds the minimum of a semi-infinitely constrained scalar function of
several variables, starting at an initial estimate. The aim is to minimize f(x) so

f x( )
x

min subject to c x( ) 0,≤

ceq x( ) 0=

A x⋅ b≤

Aeq x⋅ beq=

lb x ub≤ ≤

K1 x w1,( ) 0≤

K2 x w2,( ) 0≤

…

Kn x wn,( ) 0≤

Ki x wi,( ) 0≤
w1 w2 … wn, , , w1 w2 … wn, , ,
4-65



fseminf
the constraints hold for all possible values of (or ). Since it is
impossible to calculate all possible values of , a region must be chosen
for over which to calculate an appropriately sampled set of values.

x = fseminf(fun,x0,ntheta,seminfcon) starts at x0 and finds a minimum of
the function fun constrained by ntheta semi-infinite constraints defined in
seminfcon.

x = fseminf(fun,x0,ntheta,seminfcon,A,b) also tries to satisfy the linear
inequalities A*x <= b.

x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq) minimizes subject to
the linear equalities Aeq*x = beq as well. Set A=[] and b=[] if no inequalities
exist.

x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq,lb,ub) defines a set
of lower and upper bounds on the design variables, x, so that the solution is
always in the range lb <= x <= ub.

x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq,lb,ub,options)
minimizes with the optimization parameters specified in the structure
options.

x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq,lb,ub,options, 
P1,P2,...) passes the problem-dependent parameters P1, P2, etc., directly to
the functions fun and seminfcon. Pass empty matrices as placeholders for A, b,
Aeq, beq, lb, ub, and options if these arguments are not needed.

[x,fval] = fseminf(...) returns the value of the objective function fun at
the solution x.

[x,fval,exitflag] = fseminf(...) returns a value exitflag that describes
the exit condition.

[x,fval,exitflag,output] = fseminf(...) returns a structure output that
contains information about the optimization.

[x,fval,exitflag,output,lambda] = fseminf(...) returns a structure
lambda whose fields contain the Lagrange multipliers at the solution x.

wi ℜ1∈ wi ℜ2∈
Ki x wi,( )

wi
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Arguments The arguments passed into the function are described in Table 4-1. The
arguments returned by the function are described in Table 4-2. Details
relevant to fseminf are included below for fun, ntheta, options, seminfcon,
exitflag, lambda, and output.

fun The function to be minimized. fun takes a vector x and returns a
scalar value f of the objective function evaluated at x. You can
specify fun to be an inline object. For example,

fun = inline('sin(x''*x)');

Alternatively, fun can be a string containing the name of a
function (an M-file, a built-in function, or a MEX-file). If
fun='myfun' then the M-file function myfun.m would have the
form

function f = myfun(x)
f = ... % Compute function value at x

If the gradient of fun can also be computed and options.GradObj
is 'on', as set by

options = optimset('GradObj','on')

then the function funmust return, in the second output argument,
the gradient value g, a vector, at x. Note that by checking the value
of nargout the function can avoid computing g when fun is called
with only one output argument (in the case where the
optimization algorithm only needs the value of f but not g):

function [f,g] = myfun(x)
f = ... % compute the function value at x
if nargout > 1 % fun called with 2 output arguments

g = ... % compute the gradient evaluated at x
end

The gradient is the partial derivatives of f at the point x. That is,
the ith component of g is the partial derivative of f with respect
to the ith component of x.

ntheta The number of semi-infinite constraints.
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options Optimization parameter options. You can set or change the values
of these parameters using the optimset function.

• DerivativeCheck – Compare user-supplied derivatives
(gradients) to finite-differencing derivatives.

• Diagnostics – Print diagnostic information about the function
to be minimized or solved.

• DiffMaxChange – Maximum change in variables for
finite-difference gradients.

• DiffMinChange – Minimum change in variables for
finite-difference gradients.

• Display – Level of display. 'off' displays no output; 'iter'
displays output at each iteration; 'final' displays just the final
output.

• GradObj – Gradient for the objective function defined by user.
See the description of fun under the Arguments section above to
see how to define the gradient in fun. The gradient must be
provided to use the large-scale method. It is optional for the
medium-scale method.

• MaxFunEvals – Maximum number of function evaluations
allowed.

• MaxIter – Maximum number of iterations allowed.

• TolCon – Termination tolerance on the constraint violation.

• TolFun – Termination tolerance on the function value.

• TolX – Termination tolerance on x.

seminfcon The function that computes the vector of nonlinear inequality
constraints, c, a vector of nonlinear equality constraints, ceq, and
ntheta semi-infinite constraints (vectors or matrices) K1, K2,...,
Kntheta evaluated over an interval S at the point x. seminfcon is
a string containing the name of the function (an M-file, a built-in,
or a MEX-file). For example, if seminfcon='myinfcon' then the
M-file myinfcon.m would have the form
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function [c,ceq,K1,K2,...,Kntheta,S] = myinfcon(x,S)
% Initial sampling interval
if isnan(S(1,1)),

S = ...% S has ntheta rows and 2 columns
end
w1 = ...% Compute sample set
w2 = ...% Compute sample set 
...
wntheta = ... % Compute sample set
K1 = ... % 1st semi-infinite constraint at x and w
K2 = ... % 2nd semi-infinite constraint at x and w
...
Kntheta = ...% last semi-infinite constraint at x and w
c = ... % Compute nonlinear inequalities at x
ceq = ... % Compute the nonlinear equalities at x

S is a recommended sampling interval, which may or may not be
used. Return [] for c and ceq if no such constraints exist.

The vectors or matrices, K1, K2, ..., Kntheta, contain the
semi-infinite constraints evaluated for a sampled set of values for
the independent variables, w1, w2, ... wntheta, respectively. The
two column matrix, S, contains a recommended sampling interval
for values of w1, w2, ... wntheta, which are used to evaluate K1,
K2, ... Kntheta. The ith row of S contains the recommended
sampling interval for evaluating Ki. When Ki is a vector, use only
S(i,1) (the second column can be all zeros). When Ki is a matrix,
s(i,2) is used for the sampling of the rows in Ki, S(i,1) is used
for the sampling interval of the columns of Ki (see
“Two-Dimensional Example” in the Examples section). On the
first iteration S is NaN, so that some initial sampling interval must
be determined by seminfcon.

exitflag Describes the exit condition:

• > 0 indicates that the function converged to a solution x.

• 0 indicates that the maximum number of function evaluations
or iterations was reached.

• < 0 indicates that the function did not converge to a solution.
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Notes The recommended sampling interval, S, set in seminfcon,may be varied by the
optimization routine fseminf during the computation because values other
than the recommended interval may be more appropriate for efficiency or
robustness. Also, the finite region , over which is calculated, is
allowed to vary during the optimization provided that it does not result in
significant changes in the number of local minima in .

Examples One-Dimensional Example
Find values of x that minimize

for all values of and over the ranges

lambda A structure containing the Lagrange multipliers at the solution x
(separated by constraint type):

• lambda.lower for the lower bounds lb.

• lambda.upper for the upper bounds ub.

• lambda.ineqlin for the linear inequalities.

• lambda.eqlin for the linear equalities.

• lambda.ineqnonlin for the nonlinear inequalities.

• lambda.eqnonlin for the nonlinear equalities.

output A structure whose fields contain information about the
optimization:

• output.iterations – The number of iterations taken.

• output.funcCount – The number of function evaluations.

• output.algorithm – The algorithm used.

• output.stepsize – The final step size taken.

wi Ki x wi,( )

Ki x wi,( )

f x( ) x1 0.5–( )2 x2 0.5–( )2 x3 0.5–( )2+ +=

where

K1 x w1,( ) w1x1( )sin w1x2( )cos
1

1000------------- w1 50–( )2 w1x3( )sin x3 1≤–––=

K2 x w2,( ) w2x2( )sin w2x1( )cos
1

1000------------- w2 50–( )2 w2x3( )sin x3 1≤–––=

w1 w2
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Note that the semi-infinite constraints are one-dimensional, that is, vectors.
Since the constraints must be in the form you will need to
compute the constraints as

First, write an M-file that computes the objective function:

function f = myfun(x,s)
% Objective function
f = sum((x–0.2).^2);

Second, write an M-file, mycon.m, that computes the nonlinear equality and
inequality constraints and the semi-infinite constraints:

function [c,ceq,K1,K2,s] = mycon(x,s)
% Initial sampling interval
if isnan(s(1,1)),

s = [0.2 0; 0.2 0];
end
% Sample set
w1 = 1:s(1,1):100;
w2 = 1:s(2,1):100;

% Semi–infinite constraints 
K1 = sin(w1*X(1)).*cos(w1*X(2)) – 1/1000*(w1–50).^2 –...

sin(w1*X(3))–X(3)–1;
K2 = sin(w2*X(2)).*cos(w2*X(1)) – 1/1000*(w2–50).^2 –...

sin(w2*X(3))–X(3)–1;

% No constraints
c = []; ceq=[];

1 w1 100≤ ≤

1 w2 100≤ ≤

Ki x wi,( ) 0≤

K1 x w1,( ) w1x1( )sin w1x2( )cos
1

1000------------- w1 50–( )2 w1x3( )sin x3 1– 0≤–––=

K2 x w2,( ) w2x2( )sin w2x1( )cos
1

1000------------- w2 50–( )2 w2x3( )sin x3 1– 0≤–––=
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% Plot a graph of semi-infinite constraints
plot(w1,K1,'-',w2,K2,':'),title('Semi–infinite constraints')
drawnow

Then, invoke an optimization routine:

x0 = [0.5; 0.2; 0.3]; % Starting guess at the solution
[x,fval] = fseminf('myfun',x0,2,'mycon')

After eight iterations, the solution is

x =
0.6673
0.3013
0.4023

The function value and the maximum values of the semi-infinite constraints at
the solution x are

fval =
0.0770

[c,ceq,K1,K2] = mycon(x,NaN);
max(K1)
ans =

–0.0017
max(K2)
ans =

–0.0845
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A plot of the semi-infinite constraints is produced.

This plot shows how peaks in both functions are on the constraint boundary.

The plot command inside of 'mycon.m'will slow down the computation; remove
this line to improve the speed.

Two-Dimensional Example
Find values of x that minimize

where

for all values of and over the ranges:

starting at the point .

Note that the semi-infinite constraint is two-dimensional, that is, a matrix.

-6

-5

-4

-3

-2

-1

0

0 10 20 30 40 50 60 70 80 90 100

Semi-infinite constraints

f x( ) x1 0.5–( )2 x2 0.5–( )2 x3 0.5–( )2+ +=

K1 x w,( ) w1x1( )sin 10w2x2( )cos
1

1000------------- w1 50–( )2 10w1x3( )sin x3 …+–––=

w2x2( )sin w1x1( )cos
1

1000------------- w2 50–( )2 w2x3( )sin x3– 1.5≤+––

w1 w2

1 w1 100≤ ≤

1 w2 100≤ ≤

x 0.2 0.2 0.2, ,[ ]=
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First, we reuse the file myfun.m for the objective function from the previous
example.

Second, write an M-file for the constraints, called mycon.m:

function [c,ceq,K1,s] = mycon(x,s)
% Initial sampling interval
if isnan(s(1,1)),

s = [2 2];
end
%
% Sampling set
w1x = 1:s(1,1):100;
w1y = 1:s(1,2):100;
[wx,wy] = meshgrid(w1x,w1y);
%
% Semi–infinite constraint 
K1 = sin(wx*X(1)).*cos(wy*X(2))–1/1000*(wx–50).^2 –...

sin(wx*X(3))–X(3)+sin(wy*X(2)).*cos(wx*X(1))–...
1/1000*(wy–50).^2–sin(wy*X(3))–X(3)–1.5;

%
% No finite nonlinear constraints
c = []; ceq=[];
%
% Mesh plot
mesh(K1,title('Semi–infinite constraint')
drawnow

Next, invoke an optimization routine:

x0 = [0.25, 0.25, 0.25]; % Starting guess at the solution
[x,fval] = fseminf('myfun',x0,1,'mycon')

After seven iterations, the solution is

x =
0.2081 0.2066 0.1965

[c,ceq,K1] = mycon(x,NaN);
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The function value and the maximum value of the semi-infinite constraint at
the solution x are

fval = 
1.2066e–04

max(max(K1))
ans =

–0.0262

The following mesh plot is produced.

Algorithm fseminf uses cubic and quadratic interpolation techniques to estimate peak
values in the semi-infinite constraints. The peak values are used to form a set
of constraints that are supplied to an SQP method as in the function fmincon.
When the number of constraints changes, Lagrange multipliers are reallocated
to the new set of constraints.

The recommended sampling interval calculation uses the difference between
the interpolated peak values and peak values appearing in the data set to
estimate whether more or fewer points need to be taken. The effectiveness of
the interpolation is also taken into consideration by extrapolating the curve
and comparing it to other points in the curve. The recommended sampling
interval is decreased when the peak values are close to constraint boundaries,
i.e., zero.

Semi-infinite constraint
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See also the SQP implementation section in the Introduction to Algorithms
chapter for more details on the algorithm used and the types of procedures
printed under the Procedures heading for options.Display = 'iter' setting.

Limitations The function to be minimized, the constraints, and semi-infinite constraints,
must be continuous functions of x and w. fseminf may only give local solutions.

When the problem is not feasible, fseminf attempts to minimize the maximum
constraint value.

See Also fmincon, optimset
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4fsolvePurpose Solve a system of nonlinear equations

for x, where x is a vector and F(x) is a function that returns a vector value.

Syntax x = fsolve(fun,x0)
x = fsolve(fun,x0,options)
x = fsolve(fun,x0,options,P1,P2, ... )
[x,fval] = fsolve(...)
[x,fval,exitflag] = fsolve(...)
[x,fval,exitflag,output] = fsolve(...)
[x,fval,exitflag,output,jacobian] = fsolve(...)

Description fsolve finds a root (zero) of a system of nonlinear equations.

x = fsolve(fun,x0) starts at x0 and tries to solve the equations described in
fun.

x = fsolve(fun,x0,options) minimizes with the optimization parameters
specified in the structure options.

x = fsolve(fun,x0,options,P1,P2,...) passes the problem-dependent
parameters P1, P2, etc., directly to the function fun. Pass an empty matrix for
options to use the default values for options.

[x,fval] = fsolve(fun,x0) returns the value of the objective function fun at
the solution x.

[x,fval,exitflag] = fsolve(...) returns a value exitflag that describes
the exit condition.

[x,fval,exitflag,output] = fsolve(...) returns a structure output that
contains information about the optimization.

[x,fval,exitflag,output,jacobian] = fsolve(...) returns the Jacobian
of fun at the solution x.

F x( ) 0=
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Arguments The arguments passed into the function are described in Table 4-1. The
arguments returned by the function are described in Table 4-2. Details
relevant to fsolve are included below for fun, options, exitflag, and output.

fun The function to be minimized. fun takes a vector x and returns a
vector F of the nonlinear equations evaluated at x. You can specify
fun to be an inline object. For example,

x = fsolve(inline('sin(x.*x)'),x0)

Alternatively, fun can be a string containing the name of a function
(an M-file, a built-in function, or a MEX-file). If fun='myfun' then
the M-file function myfun.m would have the form

function F = myfun(x)
F = ... % Compute function values at x

If the Jacobian can also be computed and options.Jacobian is
'on', set by

options = optimset('Jacobian','on')

then the function fun must return, in a second output argument,
the Jacobian value J, a matrix, at x. Note that by checking the
value of nargout the function can avoid computing J when fun is
called with only one output argument (in the case where the
optimization algorithm only needs the value of F but not J):

function [F,J] = myfun(x)
F = ... % objective function values at x
if nargout > 1 % two output arguments

J = ... % Jacobian of the function evaluated at x
end

If fun returns a vector (matrix) of m components and x has length
n, then the Jacobian J is an m-by-n matrix where J(i,j) is the
partial derivative of F(i) with respect to x(j). (Note that the
Jacobian J is the transpose of the gradient of F.)
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options Optimization parameter options. You can set or change the values
of these parameters using the optimset function. Some parameters
apply to all algorithms, some are only relevant when using the
large-scale algorithm, and others are only relevant when using the
medium-scale algorithm.

We start by describing the LargeScale option since it states a
preference for which algorithm to use. It is only a preference since
certain conditions must be met to use the large-scale algorithm.
For lsqnonlin, the nonlinear system of equations cannot be
underdetermined; that is, the number of equations (the number of
elements of F returned by fun) must be at least as many as the
length of x or else the medium-scale algorithm will be used.

• LargeScale – Use large-scale algorithm if possible when set to
'on'. Use medium-scale algorithm when set to 'off'.

Parameters used by both the large-scale and medium-scale
algorithms:

• Diagnostics – Print diagnostic information about the function
to be minimized.

• Display – Level of display. 'off' displays no output; 'iter'
displays output at each iteration; 'final' displays just the final
output.

• Jacobian – Jacobian for the objective function defined by user.
See the description of fun above to see how to define the Jacobian
in fun.

• MaxFunEvals – Maximum number of function evaluations
allowed.

• MaxIter – Maximum number of iterations allowed.

• TolFun – Termination tolerance on the function value.

• TolX – Termination tolerance on x.
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Parameters used by the large-scale algorithm only:

• JacobPattern – Sparsity pattern of the Jacobian for
finite-differencing. If it is not convenient to compute the
Jacobian matrix J in fun, lsqnonlin can approximate J via
sparse finite-differences provided the structure of J — i.e.,
locations of the nonzeros — is supplied as the value for
JacobPattern. In the worst case, if the structure is unknown,
you can set JacobPattern to be a dense matrix and a full
finite-difference approximation will be computed in each
iteration (this is the default if JacobPattern is not set). This can
be very expensive for large problems so it is usually worth the
effort to determine the sparsity structure.

• MaxPCGIter – Maximum number of PCG (preconditioned
conjugate gradient) iterations (see the Algorithm section below).

• PrecondBandWidth – Upper bandwidth of preconditioner for
PCG. By default, diagonal preconditioning is used (upper
bandwidth of 0). For some problems, increasing the bandwidth
reduces the number of PCG iterations.

• TolPCG – Termination tolerance on the PCG iteration.

• TypicalX – Typical x values.

Parameters used by the medium-scale algorithm only:

• DerivativeCheck – Compare user-supplied derivatives
(Jacobian) to finite-differencing derivatives.

• DiffMaxChange – Maximum change in variables for
finite-differencing.

• DiffMinChange – Minimum change in variables for
finite-differencing.

• LevenbergMarquardt – Choose Levenberg-Marquardt over
Gauss-Newton algorithm.

• LineSearchType – Line search algorithm choice.
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Examples Example 1: Find a zero of the system of two equations and two unknowns

Thus we want to solve the following system for x

starting at x0 = [–5 –5].

First, write an M-file that computes F, the values of the equations at x:

function F = myfun(x)
F = [2*x(1) – x(2) – exp(–x(1));

–x(1) + 2*x(2) – exp(–x(2))];

exitflag Describes the exit condition:

• > 0 indicates that the function converged to a solution x.

• 0 indicates that the maximum number of function evaluations or
iterations was reached.

• < 0 indicates that the function did not converge to a solution.

output A structure whose fields contain information about the
optimization:

• output.iterations – The number of iterations taken.

• output.funcCount – The number of function evaluations.

• output.algorithm – The algorithm used.

• output.cgiterations – The number of PCG iterations
(large-scale algorithm only).

• output.stepsize – The final step size taken (medium-scale
algorithm only).

• output.firstorderopt – A measure of first-order optimality
(large-scale algorithm only).

2x1 x2– e x1–=

x1– 2x2+ e x– 2=

2x1 x2– e x1–– 0=

x1– 2x2 e x– 2–+ 0=
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Next, call an optimization routine:

x0 = [–5; –5]; % Make a starting guess at the solution
options=optimset('Display','iter');   % Option to display output
[x,fval] = fsolve('myfun',x0,options) % call optimizer

After 28 function evaluations, a zero is found:

Optimization terminated successfully:
 Relative function value changing by less than OPTIONS.TolFun
x =
    0.5671
    0.5671
fval =
   1.0e–08 *

–0.5320
–0.5320

Example 2: Find a matrix x that satisfies the equation

starting at the point x= [1,1; 1,1].

Iteration Func-count f(x)
Norm of

step
First-order
optimality CG-iterations

1 4 47071.2 1 2.29e+004 0
2 7 6527.47 1.45207 3.09e+003 1
3 10 918.372 1.49186 418 1
4 13 127.74 1.55326 57.3 1
5 16 14.9153 1.57591 8.26 1
6 19 0.779051 1.27662 1.14 1
7 22 0.00372453 0.484658 0.0683 1
8 25 9.21617e-008 0.0385552 0.000336 1
9 28 5.66133e-017 0.000193707 8.34e-009 1

X X X∗ ∗
1 2

3 4

,=
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First, write an M-file that computes the equations to be solved:

function F = myfun(x)
F = x*x*x–[1,2;3,4];

Next, invoke an optimization routine:

x0 = ones(2,2); % Make a starting guess at the solution
options = optimset('Display','off'); % Turn off Display
[x,Fval,exitflag] = fsolve('myfun',x0,options)

The solution is

x =
–0.1291    0.8602
1.2903    1.1612 

Fval =
1.0e–03 *
0.1541 –0.1163
0.0109  –0.0243

exitflag =
     1

and the residual is close to zero

sum(sum(Fval.*Fval))
ans = 

3.7974e–008

Notes If the system of equations is linear, then \ (the backslash operator: see  
help slash) should be used for better speed and accuracy. For example, say we
want to find the solution to the following linear system of equations:

3x1 11x2 2x3–+ 7=

x1 x2 2x3–+ 4=

x1 x2 x3+– 19=
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Then the problem is formulated and solved as

A = [ 3 11 –2; 1 1 –2; 1 –1 1];
b = [ 7; 4; 19];
x = A\b
x =
   13.2188
   –2.3438
    3.4375

Algorithm The methods are based on the nonlinear least-squares algorithms also used in
lsqnonlin. The advantage of using a least-squares method is that if the system
of equations is never zero due to small inaccuracies, or because it just does not
have a zero, the algorithm still returns a point where the residual is small.
However, if the Jacobian of the system is singular, the algorithm may converge
to a point that is not a solution of the system of equations (see Limitations and
Diagnostics below).

Large-scale optimization. By default fsolve will choose the large-scale algorithm.
The algorithm is a subspace trust region method and is based on the
interior-reflective Newton method described in [5],[6]. Each iteration involves
the approximate solution of a large linear system using the method of
preconditioned conjugate gradients (PCG). See the trust-region and
preconditioned conjugate gradient method descriptions in the Large-Scale
Algorithms chapter.

Medium-scale optimization. fsolve with options.LargeScale set to 'off' uses
the Gauss-Newton method [4] with line-search. Alternatively, a
Levenberg-Marquardt method [1], [2], [3] with line-search may be selected. The
choice of algorithm is made by setting options.LevenbergMarquardt. Setting
options.LevenbergMarquardt to 'on' (and options.LargeScale to 'off')
selects the Levenberg-Marquardt method.

The default line search algorithm, i.e., options.LineSearchType set to
'quadcubic', is a safeguarded mixed quadratic and cubic polynomial
interpolation and extrapolation method. A safeguarded cubic polynomial
method can be selected by setting options.LineSearchType to 'cubicpoly'.
This method generally requires fewer function evaluations but more gradient
evaluations. Thus, if gradients are being supplied and can be calculated
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inexpensively, the cubic polynomial line search method is preferable. The
algorithms used are described fully in the Introduction to Algorithms chapter.

Diagnostics fsolve may converge to a nonzero point and give this message

Optimizer is stuck at a minimum that is not a root
Try again with a new starting guess

In this case, run fsolve again with other starting values.

Limitations The function to be solved must be continuous. When successful, fsolve only
gives one root. fsolve may converge to a nonzero point, in which case, try other
starting values.

fsolve only handles real variables. When x has complex variables, the
variables must be split into real and imaginary parts.

Large-scale optimization. Currently, if the analytical Jacobian is provided in fun,
the options parameter DerivativeCheck cannot be used with the large-scale
method to compare the analytic Jacobian to the finite-difference Jacobian.
Instead, use the medium-scale method to check the derivative with options
parameter MaxIter set to 0 iterations. Then run the problem again with the
large-scale method. See Table 1-4 for more information on what problem
formulations are covered and what information must be provided.

The preconditioner computation used in the preconditioned conjugate gradient
part of the large-scale method forms JTJ (where J is the Jacobian matrix)
before computing the preconditioner; therefore, a row of J with many nonzeros,
which results in a nearly dense product JTJ, may lead to a costly solution
process for large problems.

See Also \, optimset, lsqnonlin, lsqcurvefit, inline

References [1] Levenberg, K., “A Method for the Solution of Certain Problems in Least
Squares,” Quarterly Applied Mathematics 2, pp. 164-168, 1944.

[2] Marquardt, D., “An Algorithm for Least–squares Estimation of Nonlinear
Parameters,” SIAM Journal Applied Mathematics, Vol. 11, pp. 431-441, 1963.
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[3] More, J. J., “The Levenberg–Marquardt Algorithm: Implementation and
Theory,” Numerical Analysis, ed. G. A. Watson, Lecture Notes in Mathematics
630, Springer Verlag, pp. 105-116, 1977.

[4] Dennis, J. E. Jr., “Nonlinear Least Squares,” State of the Art in Numerical
Analysis, ed. D. Jacobs, Academic Press, pp. 269-312.

[5] Coleman, T.F. and Y. Li, “On the Convergence of Reflective Newton
Methods for Large-Scale Nonlinear Minimization Subject to Bounds,”
Mathematical Programming, Vol. 67, Number 2, pp. 189-224, 1994.

[6] Coleman, T.F. and Y. Li, “An Interior, Trust Region Approach for Nonlinear
Minimization Subject to Bounds,” SIAM Journal on Optimization, Vol. 6, pp.
418-445, 1996.
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4fzeroPurpose Zero of a function of one variable

Syntax x = fzero(fun,x0)
x = fzero(fun,x0,options)
x = fzero(fun,x0,options,P1,P2,...)
[x,fval] = fzero(...)
[x,fval,exitflag] = fzero(...)
[x,fval,exitflag,output] = fzero(...)

Description x = fzero(fun,x0) tries to find a zero of fun near x0 if x0 is a scalar. The
value x returned by fzero is near a point where fun changes sign, or NaN if the
search fails. In this case, the search terminates when the search interval is
expanded until an Inf, NaN, or complex value is found.

If x0 is a vector of length two, fzero assumes x0 is an interval where the sign
of fun(x0(1)) differs from the sign of fun(x0(2)). An error occurs if this is not
true. Calling fzero with such an interval guarantees fzero will return a value
near a point where fun changes sign.

x = fzero(fun,x0,options) minimizes with the optimization parameters
specified in the structure options.

x = fzero(fun,x0,options,P1,P2,...) provides for additional arguments,
P1, P2, etc., which are passed to the objective function, fun. Use options=[] as
a placeholder if no options are set.

[x,fval] = fzero(...) returns the value of the objective function fun at the
solution x.

[x,fval,exitflag] = fzero(...) returns a value exitflag that describes
the exit condition.

[x,fval,exitflag,output] = fzero(...) returns a structure output that
contains information about the optimization.

Note:  For the purposes of this command, zeros are considered to be points
where the function actually crosses, not just touches, the x-axis.
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Arguments The arguments passed into the function are described in Table 4-1. The
arguments returned by the function are described in Table 4-2. Details
relevant to fzero are included below for fun, options, exitflag, and output.

fun The function to be minimized. fun takes a scalar x and returns a
scalar value f of the objective function evaluated at x. You can
specify fun to be an inline object. For example,

x = fzero(inline('sin(x*x)'),x0)

Alternatively, fun can be a string containing the name of a function
(an M-file, a built-in function, or a MEX-file). If fun='myfun' then
the M-file function myfun.m would have the form

function f = myfun(x)
f = ... % Compute function value at x

options Optimization parameter options. You can set or change the values
of these parameters using the optimset function. fzero uses these
options structure fields:

• Display – Level of display. 'off' displays no output; 'iter'
displays output at each iteration; 'final' displays just the final
output.

• TolX – Termination tolerance on x.

exitflag Describes the exit condition:

• > 0 indicates that fzero found a zero x

• < 0 then no interval was found with a sign change, or a NaN or
Inf function value was encountered during the search for an
interval containing a sign change, or a complex function value
was encountered during the search for an interval containing a
sign change.
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Examples Calculate π by finding the zero of the sine function near 3.

x = fzero('sin',3)
x =
    3.1416

To find the zero of cosine between 1 and 2:

x = fzero('cos',[1 2])
x =

1.5708

Note that cos(1) and cos(2) differ in sign.

To find a zero of the function

write an M-file called f.m.

function y = f(x)
y = x.^3–2*x–5;

To find the zero near 2

z = fzero('f',2)
z =
    2.0946

Since this function is a polynomial, the statement roots([1 0 –2 –5]) finds
the same real zero, and a complex conjugate pair of zeros.

    2.0946
   –1.0473 + 1.1359i
   –1.0473 – 1.1359i

output A structure whose fields contain information about the
optimization:

• output.iterations – The number of iterations taken (for fzero,
this is the same as the number of function evaluations).

• output.algorithm – The algorithm used.

• output.funcCount – The number of function evaluations.

f x( ) x3 2x– 5–=
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Notes Calling fzero with an interval (x0 with two elements) is often faster than
calling it with a scalar x0.

Algorithm The fzero command is an M-file. The algorithm, which was originated by T.
Dekker, uses a combination of bisection, secant, and inverse quadratic
interpolation methods. An Algol 60 version, with some improvements, is given
in [1]. A Fortran version, upon which the fzero M-file is based, is in [2].

Limitations The fzero command defines a zero as a point where the function crosses the
x-axis. Points where the function touches, but does not cross, the x-axis are not
valid zeros. For example, y = x.^2 is a parabola that touches the x-axis at 0.
Since the function never crosses the x-axis, however, no zero is found. For
functions with no valid zeros, fzero executes until Inf, NaN, or a complex value
is detected.

See Also roots, fminbnd, fsolve, \, inline, optimset

References [1] Brent, R., Algorithms for Minimization Without Derivatives, Prentice-Hall,
1973.

[2] Forsythe, G. E., M. A. Malcolm, and C. B. Moler, Computer Methods for
Mathematical Computations, Prentice-Hall, 1976.
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4linprogPurpose Solve a linear programming problem

where f, x, b, beq, lb, and ub are vectors and A and Aeq are matrices.

Syntax x = linprog(f,A,b,Aeq,beq)
x = linprog(f,A,b,Aeq,beq,lb,ub)
x = linprog(f,A,b,Aeq,beq,lb,ub,x0)
x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options)
[x,fval] = linprog(...)
[x,fval,exitflag] = linprog(...)
[x,fval,exitflag,output] = linprog(...)
[x,fval,exitflag,output,lambda] = linprog(...)

Description linprog solves linear programming problems.

x = linprog(f,A,b) solves min f'*x such that A*x <= b.

x = linprog(f,A,b,Aeq,beq) solves the problem above while additionally
satisfying the equality constraints Aeq*x = beq. Set A=[] and b=[] if no
inequalities exist.

x = linprog(f,A,b,Aeq,beq,lb,ub) defines a set of lower and upper bounds
on the design variables, x, so that the solution is always in the range
lb <= x <= ub. Set Aeq=[] and beq=[] if no equalities exist.

x = linprog(f,A,b,Aeq,beq,lb,ub,x0) sets the starting point to x0. This
option is only available with the medium-scale algorithm
(options.LargeScale is 'off'). The default large-scale algorithm will ignore
any starting point.

x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options) minimizes with the
optimization parameters specified in the structure options.

fTx
x

min such that A x⋅ b≤

Aeq x⋅ beq=

lb x ub≤ ≤
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[x,fval] = linprog(...) returns the value of the objective function fun at
the solution x: fval = f'*x.

[x,lambda,exitflag] = linprog(...) returns a value exitflag that
describes the exit condition.

[x,lambda,exitflag,output] = linprog(...) returns a structure output
that contains information about the optimization.

[x,fval,exitflag,output,lambda] = linprog(...) returns a structure
lambda whose fields contain the Lagrange multipliers at the solution x.

Arguments The arguments passed into the function are described in Table 4-1. The
arguments returned by the function are described in Table 4-2. Details
relevant to linprog are included below for options, exitflag, lambda, and
output.

options Optimization parameter options. You can set or change the values
of these parameters using the optimset function.

• Diagnostics – Print diagnostic information about the function
to be minimized.

• Display – Level of display. 'off' displays no output; 'iter'
displays output at each iteration; 'final' displays just the final
output. At this time the 'iter' level only works with the
large-scale algorithm.

• LargeScale – Use large-scale algorithm if possible when set to
'on'. Use medium-scale algorithm when set to 'off'.

• MaxIter – Maximum number of iterations allowed.

• TolFun – Termination tolerance on the function value.

exitflag Describes the exit condition:

• > 0 indicates that the function converged to a solution x.

• 0 indicates that the maximum number of function evaluations or
iterations was reached.

• < 0 indicates that the function did not converge to a solution.
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Examples Find x that minimizes

subject to

First, enter the coefficients:

f = [–5; –4; –6]
A = [1 –1  1
     3  2  4
      3  2  0];
b = [20; 42; 30];
lb = zeros(3,1);

Next, call a linear programming routine:

[x,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],lb);

lambda A structure containing the Lagrange multipliers at the solution x
(separated by constraint type):

• lambda.lower for the lower bounds lb.

• lambda.upper for the upper bounds ub.

• lambda.ineqlin for the linear inequalities.

• lambda.eqlin for the linear equalities.

output A structure whose fields contain information about the
optimization:

• output.iterations – The number of iterations taken.

• output.algorithm – The algorithm used.

• output.cgiterations – The number of PCG iterations
(large-scale algorithm only).

f x( ) 5x1 4x2– 6x3––=

x1 x2 x3+– 20≤

3x1 2x2 4x3+ + 42≤

3x1 2x2+ 30≤

0 x1≤ 0 x2≤ 0 x3≤,,
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Entering x, lambda.ineqlin, and lambda.lower gets

x = 
0.0000
15.0000
3.0000

lambda.ineqlin =
0
1.5000
0.5000

lambda.lower =
1.0000
0
0

Nonzero elements of the vectors in the fields of lambda indicate active
constraints at the solution. In this case, the second and third inequality
constraints (in lambda.ineqlin) and the first lower bound constraint (in
lambda.lower) are active constraints (i.e., the solution is on their constraint
boundaries).

Algorithm Large-scale optimization. The large-scale method is based on LIPSOL ([3]), which
is a variant of Mehrotra’s predictor-corrector algorithm ([2]), a primal-dual
interior-point method. A number of preprocessing steps occur before the
algorithm begins to iterate. See the linear programming section in the
Large-Scale Algorithms chapter.

Medium-scale optimization. linprog uses a projection method as used in the
quadprog algorithm. linprog is an active set method and is thus a variation of
the well-known simplex method for linear programming [1]. It finds an initial
feasible solution by first solving another linear programming problem.

Diagnostics Large-scale optimization. The first stage of the algorithm may involve some
preprocessing of the constraints (see the “Large-Scale Linear Programming”
section of the Large-Scale Algorithms chapter). Several possible conditions
might occur that cause linprog to exit with an infeasibility message. In each
case, the exitflag argument returned by linprog will be set to a negative
value to indicate failure.
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If a row of all zeros is detected in Aeq but the corresponding element of beq is
not zero, the exit message is

Exiting due to infeasibility:   an all zero row in the constraint 
matrix does not have a zero in corresponding right hand size 
entry.

If one of the elements of x is found to not be bounded below, the exit message is

Exiting due to infeasibility:   objective f'*x is unbounded below.

If one of the rows of Aeq has only one nonzero element, the associated value in
x is called a singleton variable. In this case, the value of that component of x
can be computed from Aeq and beq. If the value computed violates another
constraint, the exit message is

Exiting due to infeasibility: Singleton variables in equality 
constraints are not feasible.

If the singleton variable can be solved for but the solution violates the upper or
lower bounds, the exit message is

Exiting due to infeasibility: singleton variables in the equality 
constraints are not within bounds.

Note:  The preprocessing steps are cumulative. For example, even if your
constraint matrix does not have a row of all zeros to begin with, other
preprocessing steps may cause such a row to occur.

Once the preprocessing has finished, the iterative part algorithm begins until
the stopping criteria is met. (See the “Large-Scale Linear Programming”
section of the Large-Scale Algorithms chapter for more information about
residuals, the primal problem, the dual problem, and the related stopping
criteria.) If the residuals are growing instead of getting smaller, or the
residuals are neither growing nor shrinking, one of the two following
termination messages will display, respectively,

One or more of the residuals, duality gap, or total relative error
has grown 100000 times greater than its minimum value so far:
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or

One or more of the residuals, duality gap, or total relative error 
has stalled:

After one of these messages displays, it will be followed by one of the following
six messages indicating if it appears the dual, the primal, or both are
infeasible. The messages differ according to how the infeasibility or
unboundedness was measured.

The dual appears to be infeasible (and the primal unbounded).(The 
primal residual < TolFun)

The primal appears to be infeasible (and the dual unbounded). The 
dual residual < TolFun)

The dual appears to be infeasible (and the primal unbounded) since 
the dual residual > sqrt(TolFun).(The primal residual < 
10*TolFun)

The primal appears to be infeasible (and the dual unbounded) since 
the primal residual > sqrt(TolFun).(The dual residual < 
10*TolFun)

The dual appears to be infeasible and the primal unbounded since 
the primal objective < –1e+10 and the dual objective < 1e+6.

The primal appears to be infeasible and the dual unbounded since 
the dual objective > 1e+10 and the primal objective > –1e+6.

Both the primal and the dual appear to be infeasible.

Note that, for example, the primal (objective) can be unbounded and the primal
residual, which is a measure of primal constraint satisfaction, can be small.
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Medium-scale optimization. linprog gives a warning when the solution is
infeasible:

Warning: The constraints are overly stringent;
there is no feasible solution.

In this case, linprog produces a result that minimizes the worst case
constraint violation.

When the equality constraints are inconsistent, linprog gives

Warning: The equality constraints are overly
stringent; there is no feasible solution.

Unbounded solutions result in the warning

Warning: The solution is unbounded and at infinity;
the constraints are not restrictive enough

In this case, linprog returns a value of x that satisfies the constraints.

Limitations Medium-scale optimization. At this time, the only levels of display, using the
Display parameter in options, are 'off' and 'final'; iterative output using
'iter' is not available.

See Also quadprog

References [1] Dantzig, G.B., A. Orden, and P. Wolfe, “Generalized Simplex Method for
Minimizing a Linear from Under Linear Inequality Constraints,” Pacific
Journal Math. Vol. 5, pp. 183–195.

[2] Mehrotra, S., “On the Implementation of a Primal-Dual Interior Point
Method,” SIAM Journal on Optimization, Vol. 2, pp. 575-601, 1992.

[3] Zhang, Y., “Solving Large-Scale Linear Programs by Interior-Point Methods
Under the MATLAB Environment,” Technical Report TR96-01, Department of
Mathematics and Statistics, University of Maryland, Baltimore County,
Baltimore, MD, July 1995.
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4lsqcurvefitPurpose Solve nonlinear curve-fitting (data-fitting) problems in the least-squares sense.
That is, given input data xdata, and the observed output ydata, find coefficients
x that “best-fit” the equation F(x, xdata)

where xdata and ydata are vectors and F(x, xdata) is a vector valued function.

The function lsqcurvefit uses the same algorithm as lsqnonlin. Its purpose
is to provide an interface designed specifically for data-fitting problems.

Syntax x = lsqcurvefit(fun,x0,xdata,ydata)
x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub)
x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub,options)
x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub,options,P1,P2,...)
[x,resnorm] = lsqcurvefit(...)
[x,resnorm,residual] = lsqcurvefit(...)
[x,resnorm,residual,exitflag] = lsqcurvefit(...)
[x,resnorm,residual,exitflag,output] = lsqcurvefit(...)
[x,resnorm,residual,exitflag,output,lambda] = lsqcurvefit(...)
[x,resnorm,residual,exitflag,output,lambda,jacobian] =

lsqcurvefit(...)

Description lsqcurvefit solves nonlinear data-fitting problems. lsqcurvefit requires a
user-defined function to compute the vector-valued function F(x, xdata). The
size of the vector returned by the user-defined function must be the same as the
size of ydata.

x = lsqcurvefit(fun,x0,xdata,ydata) starts at x0 and finds coefficients x
to best fit the nonlinear function fun(x,xdata) to the data ydata (in the
least-squares sense). ydata must be the same size as the vector (or matrix) F
returned by fun.

x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub) defines a set of lower and
upper bounds on the design variables, x, so that the solution is always in the
range lb <= x <= ub.

1
2--- F x xdata,( ) ydata– 2

2

x
min

1
2--- F x xdatai,( ) ydatai–( )2

i
∑=
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x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub,options) minimizes with the
optimization parameters specified in the structure options.

x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub,options,P1,P2,...) passes
the problem-dependent parameters P1, P2, etc., directly to the function fun.
Pass an empty matrix for options to use the default values for options.

[x,resnorm] = lsqcurvefit(...) returns the value of the squared 2-norm of
the residual at x: sum{(fun(x,xdata)–ydata).^2}.

[x,resnorm,residual] = lsqcurvefit(...) returns the value of the
residual, fun(x,xdata)–ydata, at the solution x.

[x,resnorm,residual,exitflag] = lsqcurvefit(...) returns a value
exitflag that describes the exit condition.

[x,resnorm,residual,exitflag,output] = lsqcurvefit(...) returns a
structure output that contains information about the optimization.

[x,resnorm,residual,exitflag,output,lambda] = lsqcurvefit(...)
returns a structure lambda whose fields contain the Lagrange multipliers at
the solution x.

[x,resnorm,residual,exitflag,output,lambda,jacobian] = 99
99lsqcurvefit(...) returns the Jacobian of fun at the solution x.

Arguments The arguments passed into the function are described in Table 4-1. The
arguments returned by the function are described in Table 4-2. Details
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relevant to lsqcurvefit are included below for fun, options, exitflag,
lambda, and output.

fun The function to be minimized. fun takes a vector x and returns a
vector F of the objective functions evaluated at x. You can specify
fun to be an inline object with two input parameters x and xdata.
For example,

f = ... 
inline('x(1)*xdata.^2+x(2)*sin(xdata)','x','xdata');

Alternatively, fun can be a string containing the name of a function
(an M-file, a built-in function, or a MEX-file). If fun='myfun' then
the M-file function myfun.m would have the form

function F = myfun(x,xdata)
F = ... % Compute function values at x

If the Jacobian can also be computed and options.Jacobian is
'on', set by

options = optimset('Jacobian','on')

then the function fun must return, in a second output argument,
the Jacobian value J, a matrix, at x. Note that by checking the
value of nargout the function can avoid computing J when fun is
called with only one output argument (in the case where the
optimization algorithm only needs the value of F but not J):

function [F,J] = myfun(x,xdata)
F = ... % objective function values at x
if nargout > 1 % two output arguments

J = ... % Jacobian of the function evaluated at x
end

If fun returns a vector (matrix) of m components and x has length
n, then the Jacobian J is an m-by-n matrix where J(i,j) is the
partial derivative of F(i) with respect to x(j). (Note that the
Jacobian J is the transpose of the gradient of F.)
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options Optimization parameter options. You can set or change the values
of these parameters using the optimset function. Some
parameters apply to all algorithms, some are only relevant when
using the large-scale algorithm, and others are only relevant when
using the medium-scale algorithm.

We start by describing the LargeScale option since it states a
preference for which algorithm to use. It is only a preference since
certain conditions must be met to use the large-scale or
medium-scale algorithm. For the large-scale algorithm, the
nonlinear system of equations cannot be under-determined; that is,
the number of equations (the number of elements of F returned by
fun) must be at least as many as the length of x. Furthermore, only
the large-scale algorithm handles bound constraints.

• LargeScale – Use large-scale algorithm if possible when set to
'on'. Use medium-scale algorithm when set to 'off'.

Parameters used by both the large-scale and medium-scale
algorithms:

• Diagnostics – Print diagnostic information about the function
to be minimized.

• Display – Level of display. 'off' displays no output; 'iter'
displays output at each iteration; 'final' displays just the final
output.

• Jacobian – Jacobian for the objective function defined by user.
See the description of fun above to see how to define the Jacobian
in fun.

• MaxFunEvals – Maximum number of function evaluations
allowed.

• MaxIter – Maximum number of iterations allowed.

• TolFun – Termination tolerance on the function value.

• TolX – Termination tolerance on x.
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Parameters used by the large-scale algorithm only:

• JacobPattern – Sparsity pattern of the Jacobian for
finite-differencing. If it is not convenient to compute the
Jacobian matrix J in fun, lsqcurvefit can approximate J via
sparse finite-differences provided the structure of J, i.e.,
locations of the nonzeros, is supplied as the value for
JacobPattern. In the worst case, if the structure is unknown,
you can set JacobPattern to be a dense matrix and a full
finite-difference approximation will be computed in each
iteration (this is the default if JacobPattern is not set). This can
be very expensive for large problems so it is usually worth the
effort to determine the sparsity structure.

• MaxPCGIter – Maximum number of PCG (preconditioned
conjugate gradient) iterations (see the Algorithm section below).

• PrecondBandWidth – Upper bandwidth of preconditioner for
PCG. By default, diagonal preconditioning is used (upper
bandwidth of 0). For some problems, increasing the bandwidth
reduces the number of PCG iterations.

• TolPCG – Termination tolerance on the PCG iteration.

• TypicalX – Typical x values.

Parameters used by the medium-scale algorithm only:

• DerivativeCheck – Compare user-supplied derivatives
(Jacobian) to finite-differencing derivatives.

• DiffMaxChange – Maximum change in variables for
finite-differencing.

• DiffMinChange – Minimum change in variables for
finite-differencing.

• LevenbergMarquardt – Choose Levenberg-Marquardt over
Gauss-Newton algorithm.

• LineSearchType – Line search algorithm choice.
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Note:  The sum of squares should not be formed explicitly. Instead, your
function should return a vector of function values. See the examples below.

Examples Vectors of data xdata and ydata are of length n. You want to find coefficients x
to find the best fit to the equation

that is, you want to minimize

exitflag Describes the exit condition:

• > 0 indicates that the function converged to a solution x.

• 0 indicates that the maximum number of function evaluations or
iterations was reached.

• < 0 indicates that the function did not converge to a solution.

lambda A structure containing the Lagrange multipliers at the solution x
(separated by constraint type):

• lambda.lower for the lower bounds lb.

• lambda.upper for the upper bounds ub.

output A structure whose fields contain information about the
optimization:

• output.iterations – The number of iterations taken.

• output.funcCount – The number of function evaluations.

• output.algorithm – The algorithm used.

• output.cgiterations – The number of PCG iterations
(large-scale algorithm only).

• output.stepsize – The final step size taken (medium-scale
algorithm only).

• output.firstorderopt – A measure of first-order optimality
(large-scale algorithm only).

ydata i( ) x 1( ) xdata i( )2⋅ x 2( ) xdata i( )( )sin⋅ x 3( ) xdata i( )3⋅+ +=
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where F(x,xdata) = x(1)*xdata.^2 + x(2)*sin(xdata) + x(3)*xdata.^3,
starting at the point x0 = [0.3, 0.4, 0.1].

First, write an M-file to return the value of F (F has n components):

function F = myfun(x,xdata)
F = x(1)*xdata.^2 + x(2)*sin(xdata) + x(3)*xdata.^3;

Next, invoke an optimization routine:

% Assume you determined xdata and ydata experimentally
xdata = [3.6 7.7 9.3 4.1 8.6 2.8 1.3 7.9 10.0 5.4];
ydata = [16.5 150.6 263.1 24.7 208.5 9.9 2.7 163.9 325.0 54.3];
x0 = [10, 10, 10]  % Starting guess
[x,resnorm] = lsqcurvefit('myfun',x0,xdata,ydata)

Note that at the time that lsqcurvefit is called, xdata and ydata are assumed
to exist and are vectors of the same size. They must be the same size because
the value F returned by fun must be the same size as ydata.

After 33 function evaluations, this example gives the solution:

x = 
0.2269    0.3385    0.3021
% residual or sum of squares
resnorm = 

6.2950

The residual is not zero because in this case there was some noise
(experimental error) in the data.

Algorithm Large-scale optimization. By default lsqcurvefit will choose the large-scale
algorithm. This algorithm is a subspace trust region method and is based on
the interior-reflective Newton method described in [5], [6]. Each iteration
involves the approximate solution of a large linear system using the method of
preconditioned conjugate gradients (PCG). See the trust-region and
preconditioned conjugate gradient method descriptions in the Large-Scale
Algorithms chapter.

x
min

1
2--- F x xdatai,( ) ydatai–( )2

i 1=

n

∑
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Medium-scale optimization. lsqcurvefit with options.LargeScale set to 'off' 
uses the Levenberg-Marquardt method with line-search [1], [2], [3].
Alternatively, a Gauss-Newton method [4] with line-search may be selected.
The choice of algorithm is made by setting options.LevenbergMarquardt.
Setting options.LevenbergMarquardt to 'off' (and options.LargeScale to
'off') selects the Gauss-Newton method, which is generally faster when the
residual is small.

The default line search algorithm, i.e., options.LineSearchType set to
'quadcubic', is a safeguarded mixed quadratic and cubic polynomial
interpolation and extrapolation method. A safeguarded cubic polynomial
method can be selected by setting options.LineSearchType to 'cubicpoly'.
This method generally requires fewer function evaluations but more gradient
evaluations. Thus, if gradients are being supplied and can be calculated
inexpensively, the cubic polynomial line search method is preferable. The
algorithms used are described fully in the Introduction to Algorithms chapter.

Diagnostics Large-scale optimization. The large-scale code will not allow equal upper and
lower bounds. For example if lb(2)==ub(2) then lsqlin gives the error

Equal upper and lower bounds not permitted.

(lsqcurvefit does not handle equality constraints, which is another way to
formulate equal bounds. If equality constraints are present, use fmincon,
fminimax, or fgoalattain for alternative formulations where equality
constraints can be included.)

Limitations The function to be minimized must be continuous. lsqcurvefit may only give
local solutions.

lsqcurvefit only handles real variables (the user-defined function must only
return real values). When x has complex variables, the variables must be split
into real and imaginary parts.

Large-scale optimization. The large-scale method for lsqcurvefit does not solve
underdetermined systems: it requires that the number of equations, i.e., row
dimension of F, be at least as great as the number of variables. In the
underdetermined case, the medium-scale algorithm will be used instead. See
Table 1-4 for more information on what problem formulations are covered and
what information must be provided.

F x( ) 2
2
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The preconditioner computation used in the preconditioned conjugate gradient
part of the large-scale method forms JTJ (where J is the Jacobian matrix)
before computing the preconditioner; therefore, a row of J with many nonzeros,
which results in a nearly dense product JTJ, may lead to a costly solution
process for large problems.

If components of x have no upper (or lower) bounds, then lsqcurvefit prefers
that the corresponding components of ub (or lb) be set to inf (or –inf for lower
bounds) as opposed to an arbitrary but very large positive (or negative for
lower bounds) number.

Currently, if the analytical Jacobian is provided in fun, the options parameter
DerivativeCheck cannot be used with the large-scale method to compare the
analytic Jacobian to the finite-difference Jacobian. Instead, use the
medium-scale method to check the derivatives with options parameter
MaxIter set to zero iterations. Then run the problem with the large-scale
method.

See Also optimset, lsqlin, lsqnonlin, lsqnonneg, \

References [1] Levenberg, K., “A Method for the Solution of Certain Problems in Least
Squares,” Quarterly Applied Math. 2, pp. 164-168, 1944.

[2] Marquardt, D., “An Algorithm for Least–squares Estimation of Nonlinear
Parameters,” SIAM Journal Applied Math. Vol. 11, pp. 431-441, 1963.

[3] More, J. J., “The Levenberg–Marquardt Algorithm: Implementation and
Theory,” Numerical Analysis, ed. G. A. Watson, Lecture Notes in Mathematics
630, Springer Verlag, pp. 105-116, 1977.

[4] Dennis, J. E. Jr., “Nonlinear Least Squares,” State of the Art in Numerical
Analysis, ed. D. Jacobs, Academic Press, pp. 269-312, 1977.

[5] Coleman, T.F. and Y. Li, “On the Convergence of Reflective Newton
Methods for Large-Scale Nonlinear Minimization Subject to Bounds,”
Mathematical Programming, Vol. 67, Number 2, pp. 189-224, 1994.

[6] Coleman, T.F. and Y. Li, “An Interior, Trust Region Approach for Nonlinear
Minimization Subject to Bounds,” SIAM Journal on Optimization, Vol. 6, pp.
418-445, 1996.
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4lsqlinPurpose Solve the constrained linear least-squares problem

where C, A, and Aeq are matrices and d, b, beq, lb, ub, and x are vectors.

Syntax x = lsqlin(C,d,A,b)
x = lsqlin(C,d,A,b,Aeq,beq)
x = lsqlin(C,d,A,b,Aeq,beq,lb,ub)
x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0)
x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0,options)
[x,resnorm] = lsqlin(...)
[x,resnorm,residual] = lsqlin(...)
[x,resnorm,residual,exitflag] = lsqlin(...)
[x,resnorm,residual,exitflag,output] = lsqlin(...)
[x,resnorm,residual,exitflag,output,lambda] = lsqlin(...)

Description x = lsqlin(C,d,A,b) solves the linear system C*x=d in the least-squares
sense subject to A*x<=b, where C is m-by-n.

x = lsqlin(C,d,A,b,Aeq,beq) solves the problem above while additionally
satisfying the equality constraints Aeq*x = beq. Set A=[] and b=[] if no
inequalities exist.

x = lsqlin(C,d,A,b,Aeq,beq,lb,ub) defines a set of lower and upper bounds
on the design variables, x, so that the solution is always in the range
lb <= x <= ub. Set Aeq=[] and beq=[] if no equalities exist.

x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0) sets the starting point to x0.

x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0,options) minimizes with the
optimization parameters specified in the structure options.

[x,resnorm] = lsqlin(...) returns the value of the squared 2-norm of the
residual: norm(C*x–d)^2.

1
2--- Cx d–

2

x
min 2 such that A x⋅ b≤

Aeq x⋅ beq=

lb x ub≤ ≤
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[x,resnorm,residual] = lsqlin(...) returns the residual, C*x–d.

[x,resnorm,residual,exitflag] = lsqlin(...) returns a value exitflag
that describes the exit condition.

[x,resnorm,residual,exitflag,output] = lsqlin(...) returns a
structure output that contains information about the optimization.

[x,resnorm,residual,exitflag,output,lambda] = lsqlin(...) returns a
structure lambda whose fields contain the Lagrange multipliers at the solution
x.

Arguments The arguments passed into the function are described in Table 4-1. The
arguments returned by the function are described in Table 4-2. Details
relevant to lsqlin are included below for options, exitflag, lambda, and
output.

options Optimization parameter options. You can set or change the values
of these parameters using the optimset function. Some parameters
apply to all algorithms, some are only relevant when using the
large-scale algorithm, and others are only relevant when using the
medium-scale algorithm.

We start by describing the LargeScale option since it states a
preference for which algorithm to use. It is only a preference since
certain conditions must be met to use the large-scale algorithm.
For lsqlin, when the problem has only upper and lower bounds,
i.e., no linear inequalities or equalities are specified, the default
algorithm is the large-scale method. Otherwise the medium-scale
algorithm will be used.

The parameter to set an algorithm preference:

• LargeScale – Use large-scale algorithm if possible when set to
'on'. Use medium-scale algorithm when set to 'off'.
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Parameters used by both the large-scale and medium-scale
algorithms:

• Diagnostics – Print diagnostic information about the function
to be minimized.

• Display – Level of display. 'off' displays no output; 'iter'
displays output at each iteration; 'final' displays just the final
output.

• MaxIter – Maximum number of iterations allowed.

• TolFun – Termination tolerance on the function value.

Parameters used by the large-scale algorithm only:

• MaxPCGIter – Maximum number of PCG (preconditioned
conjugate gradient) iterations (see the Algorithm section below).

• PrecondBandWidth – Upper bandwidth of preconditioner for
PCG. By default, diagonal preconditioning is used (upper
bandwidth of 0). For some problems, increasing the bandwidth
reduces the number of PCG iterations.

• TolPCG – Termination tolerance on the PCG iteration.

• TypicalX – Typical x values.

exitflag Describes the exit condition:

• > 0 indicates that the function converged to a solution x.

• 0 indicates that the maximum number of function evaluations or
iterations was reached.

• < 0 indicates that the function did not converge to a solution.

lambda A structure containing the Lagrange multipliers at the solution x
(separated by constraint type):

• lambda.lower for the lower bounds lb.

• lambda.upper for the upper bounds ub.

• lambda.ineqlin for the linear inequalities.

• lambda.eqlin for the linear equalities.
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Examples Find the least-squares solution to the over-determined system
subject to and .

First, enter the coefficient matrices and the lower and upper bounds:

C = [
    0.9501    0.7620    0.6153    0.4057
    0.2311    0.4564    0.7919    0.9354
    0.6068    0.0185    0.9218    0.9169
    0.4859    0.8214    0.7382    0.4102
    0.8912    0.4447    0.1762    0.8936];
d = [
    0.0578
    0.3528
    0.8131
    0.0098
    0.1388];
A =[ 
    0.2027    0.2721    0.7467    0.4659
    0.1987    0.1988    0.4450    0.4186
    0.6037    0.0152    0.9318    0.8462];
b =[
    0.5251
    0.2026
    0.6721];
lb = –0.1*ones(4,1);
ub = 2*ones(4,1);

output A structure whose fields contain information about the
optimization:

• output.iterations – The number of iterations taken.

• output.algorithm – The algorithm used.

• output.cgiterations – The number of PCG iterations
(large-scale algorithm only).

• output.firstorderopt – A measure of first-order optimality
(large-scale algorithm only).

C x⋅ d=
A x⋅ b≤ lb x≤ ub≤
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Next, call the constrained linear least-squares routine:

[x,resnorm,residual,exitflag,output,lambda] = ...
lsqlin(C,d,A,b,[ ],[ ],lb,ub);

Entering x, lambda.ineqlin, lambda.lower, lambda.upper gets

x =
   –0.1000
   –0.1000

0.2152
    0.3502
lambda.ineqlin =

0
0.2392

         0
lambda.lower =

0.0409
    0.2784

0
         0
lambda.upper =
         0
         0
         0
         0

Nonzero elements of the vectors in the fields of lambda indicate active
constraints at the solution. In this case, the second inequality constraint (in
lambda.ineqlin) and the first lower and second lower bound constraints (in
lambda.lower) are active constraints (i.e., the solution is on their constraint
boundaries).

Notes For problems with no constraints, \ should be used: x= A\b.

In general lsqlin locates a local solution.

Better numerical results are likely if you specify equalities explicitly using Aeq
and beq, instead of implicitly using lb and ub.

Large-scale optimization. If x0 is not strictly feasible, lsqlin chooses a new
strictly feasible (centered) starting point.
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If components of x have no upper (or lower) bounds, then lsqlin prefers that
the corresponding components of ub (or lb) be set to Inf (or –Inf for lb) as
opposed to an arbitrary but very large positive (or negative in the case of lower
bounds) number.

Algorithm Large-scale optimization. When the problem given to lsqlin has only upper and
lower bounds, i.e., no linear inequalities or equalities are specified, and the
matrix C has at least as many rows as columns, the default algorithm is the
large-scale method. This method is a subspace trust-region method based on
the interior-reflective Newton method described in [2]. Each iteration involves
the approximate solution of a large linear system using the method of
preconditioned conjugate gradients (PCG). See the trust-region and
preconditioned conjugate gradient method descriptions in the Large-Scale
Algorithms chapter.

Medium-scale optimization. lsqlin with options.LargeScale set to 'off', or
when linear inequalities or equalities are given, is based on quadprog, which
uses an active set method similar to that described in [1]. It finds an initial
feasible solution by first solving a linear programming problem. See the
quadratic programming method discussed in the Introduction to Algorithms
chapter.

Diagnostics Large-scale optimization. The large-scale code does not allow equal upper and
lower bounds. For example if lb(2)==ub(2), then lsqlin gives the error:

Equal upper and lower bounds not permitted in this large-scale 
method.
Use equality constraints and the medium-scale method instead.

At this time, the medium-scale algorithm must be used to solve equality
constrained problems.

Medium-scale optimization. If the matrices C, A or Aeq are sparse, and the problem
formulation is not solvable using the large-scale code, lsqlin warns that the
matrices will be converted to full:

Warning: This problem formulation not yet available for sparse 
matrices.
Converting to full to solve.
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lsqlin gives a warning when the solution is infeasible:

Warning: The constraints are overly stringent;
there is no feasible solution.

In this case, lsqlin produces a result that minimizes the worst case constraint
violation.

When the equality constraints are inconsistent, lsqlin gives

Warning: The equality constraints are overly stringent;
there is no feasible solution.

Limitations At this time, the only levels of display, using the Display parameter in
options, are 'off' and 'final'; iterative output using 'iter' is not
available.

See Also lsqnonneg, quadprog, \

References [1] Gill, P.E., W. Murray, and M.H. Wright, Practical Optimization, Academic
Press, London, UK, 1981.

[2] Coleman, T.F. and Y. Li, “A Reflective Newton Method for Minimizing a
Quadratic Function Subject to Bounds on Some of the Variables”, SIAM
Journal on Optimization, Vol. 6, Number 4, pp. 1040-1058, 1996.
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4lsqnonlinPurpose Solve nonlinear least-squares (nonlinear data-fitting) problems

where L is a constant.

Syntax x = lsqnonlin(fun,x0)
x = lsqnonlin(fun,x0,lb,ub)
x = lsqnonlin(fun,x0,lb,ub,options)
x = lsqnonlin(fun,x0,options,P1,P2, ... )
[x,resnorm] = lsqnonlin(...)
[x,resnorm,residual] = lsqnonlin(...)
[x,resnorm,residual,exitflag] = lsqnonlin(...)
[x,resnorm,residual,exitflag,output] = lsqnonlin(...)
[x,resnorm,residual,exitflag,output,lambda] = lsqnonlin(...)
[x,resnorm,residual,exitflag,output,lambda,jacobian] =

lsqnonlin(...)

Description lsqnonlin solves nonlinear least-squares problems, including nonlinear
data-fitting problems.

Rather than compute the value f(x) (the “sum of squares”), lsqnonlin requires
the user-defined function to compute the vector-valued function

Then, in vector terms, this optimization problem may be restated as

where x is a vector and F(x) is a function that returns a vector value.

x = lsqnonlin(fun,x0) starts at the point x0 and finds a minimum to the
sum of squares of the functions described in fun. fun should return a vector of

f x( )
x

min f1 x( )2 f2 x( )2 f3 x( )2 … fm x( )2 L+ + + + +=

F x( )

f1 x( )

f2 x( )

f3 x( )

=

1
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1
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values and not the sum-of-squares of the values. (fun(x) is summed and
squared implicitly in the algorithm.)

x = lsqnonlin(fun,x0,lb,ub) defines a set of lower and upper bounds on the
design variables, x, so that the solution is always in the range lb <= x <= ub.

x = lsqnonlin(fun,x0,lb,ub,options) minimizes with the optimization
parameters specified in the structure options.

x = lsqnonlin(fun,x0,lb,ub,options,P1,P2,...) passes the
problem-dependent parameters P1, P2, etc., directly to the function fun. Pass
an empty matrix for options to use the default values for options.

[x,resnorm] = lsqnonlin(...) returns the value of the squared 2-norm of
the residual at x: sum(fun(x).^2).

[x,resnorm,residual] = lsqnonlin(...) returns the value of the residual,
fun(x), at the solution x.

[x,resnorm,residual,exitflag] = lsqnonlin(...) returns a value
exitflag that describes the exit condition.

[x,resnorm,residual,exitflag,output] = lsqnonlin(...) returns a
structure output that contains information about the optimization.

[x,resnorm,residual,exitflag,output,lambda] = lsqnonlin(...)
returns a structure lambda whose fields contain the Lagrange multipliers at
the solution x.

[x,resnorm,residual,exitflag,output,lambda,jacobian] = 
lsqnonlin(...) returns the Jacobian of fun at the solution x.

Arguments The arguments passed into the function are described in Table 4-1. The
arguments returned by the function are described in Table 4-2. Details
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relevant to lsqnonlin are included below for fun, options, exitflag, lambda,
and output.

fun The function to be minimized. fun takes a vector x and returns a
vector F of the objective functions evaluated at x. You can specify
fun to be an inline object. For example,

x = lsqnonlin(inline('sin(x.*x)'),x0)

Alternatively, fun can be a string containing the name of a function
(an M-file, a built-in function, or a MEX-file). If fun='myfun' then
the M-file function myfun.m would have the form

function F = myfun(x)
F = ... % Compute function values at x

If the Jacobian can also be computed and options.Jacobian is
'on', set by

options = optimset('Jacobian','on')

then the function fun must return, in a second output argument,
the Jacobian value J, a matrix, at x. Note that by checking the
value of nargout the function can avoid computing J when fun is
called with only one output argument (in the case where the
optimization algorithm only needs the value of F but not J):

function [F,J] = myfun(x)
F = ... % objective function values at x
if nargout > 1 % two output arguments

J = ... % Jacobian of the function evaluated at x
end

If fun returns a vector (matrix) of m components and x has length
n, then the Jacobian J is an m-by-n matrix where J(i,j) is the
partial derivative of F(i) with respect to x(j). (Note that the
Jacobian J is the transpose of the gradient of F.)
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options Optimization parameter options. You can set or change the values
of these parameters using the optimset function. Some
parameters apply to all algorithms, some are only relevant when
using the large-scale algorithm, and others are only relevant when
using the medium-scale algorithm.

We start by describing the LargeScale option since it states a
preference for which algorithm to use. It is only a preference
because certain conditions must be met to use the large-scale or
medium-scale algorithm. For the large-scale algorithm, the
nonlinear system of equations cannot be under-determined; that is,
the number of equations (the number of elements of F returned by
fun) must be at least as many as the length of x. Furthermore, only
the large-scale algorithm handles bound constraints.

• LargeScale – Use large-scale algorithm if possible when set to
'on'. Use medium-scale algorithm when set to 'off'.

Parameters used by both the large-scale and medium-scale
algorithms:

• Diagnostics – Print diagnostic information about the function
to be minimized.

• Display – Level of display. 'off' displays no output; 'iter'
displays output at each iteration; 'final' displays just the final
output.

• Jacobian – Jacobian for the objective function defined by user.
See the description of fun above to see how to define the Jacobian
in fun.

• MaxFunEvals – Maximum number of function evaluations
allowed.

• MaxIter – Maximum number of iterations allowed.

• TolFun – Termination tolerance on the function value.

• TolX – Termination tolerance on x.
4-117



lsqnonlin
Parameters used by the large-scale algorithm only:

• JacobPattern – Sparsity pattern of the Jacobian for
finite-differencing. If it is not convenient to compute the
Jacobian matrix J in fun, lsqnonlin can approximate J via
sparse finite-differences provided the structure of J, i.e.,
locations of the nonzeros, is supplied as the value for
JacobPattern. In the worst case, if the structure is unknown,
you can set JacobPattern to be a dense matrix and a full
finite-difference approximation will be computed in each
iteration (this is the default if JacobPattern is not set). This can
be very expensive for large problems so it is usually worth the
effort to determine the sparsity structure.

• MaxPCGIter – Maximum number of PCG (preconditioned
conjugate gradient) iterations (see the Algorithm section below).

• PrecondBandWidth – Upper bandwidth of preconditioner for
PCG. By default, diagonal preconditioning is used (upper
bandwidth of 0). For some problems, increasing the bandwidth
reduces the number of PCG iterations.

• TolPCG – Termination tolerance on the PCG iteration.

• TypicalX – Typical x values.

Parameters used by the medium-scale algorithm only:

• DerivativeCheck – Compare user-supplied derivatives
(Jacobian) to finite-differencing derivatives.

• DiffMaxChange – Maximum change in variables for
finite-differencing.

• DiffMinChange – Minimum change in variables for
finite-differencing.

• LevenbergMarquardt – Choose Levenberg-Marquardt over
Gauss-Newton algorithm.

• LineSearchType – Line search algorithm choice.
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Note:  The sum of squares should not be formed explicitly. Instead, your
function should return a vector of function values. See the example below.

Examples Find x that minimizes

starting at the point x = [0.3, 0.4].

exitflag Describes the exit condition:

• > 0 indicates that the function converged to a solution x.

• 0 indicates that the maximum number of function evaluations or
iterations was reached.

• < 0 indicates that the function did not converge to a solution.

lambda A structure containing the Lagrange multipliers at the solution x
(separated by constraint type):

• lambda.lower for the lower bounds lb.

• lambda.upper for the upper bounds ub.

output A structure whose fields contain information about the
optimization:

• output.iterations – The number of iterations taken.

• output.funcCount – The number of function evaluations.

• output.algorithm – The algorithm used.

• output.cgiterations – The number of PCG iterations
(large-scale algorithm only).

• output.stepsize – The final step size taken (medium-scale
algorithm only).

• output.firstorderopt – A measure of first-order optimality
(large-scale algorithm only).

2 2k e
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Because lsqnonlin assumes that the sum-of-squares is not explicitly formed in
the user function, the function passed to lsqnonlin should instead compute the
vector valued function

for (that is, F should have k components).

First, write an M-file to compute the k-component vector F:

function F = myfun(x)
k = 1:10;
F = 2 + 2*k–exp(k*x(1))–exp(k*x(2));

Next, invoke an optimization routine:

x0 = [0.3 0.4] % Starting guess
[x,resnorm] = lsqnonlin('myfun',x0) % Invoke optimizer

After about 24 function evaluations, this example gives the solution:

x = 
0.2578  0.2578

resnorm %residual or sum of squares
resnorm = 

124.3622

Algorithm Large-scale optimization. By default lsqnonlin will choose the large-scale
algorithm. This algorithm is a subspace trust region method and is based on
the interior-reflective Newton method described in [5], [6]. Each iteration
involves the approximate solution of a large linear system using the method of
preconditioned conjugate gradients (PCG). See the trust-region and
preconditioned conjugate gradient method descriptions in the Large-Scale
Algorithms chapter.

Medium-scale optimization. lsqnonlin with options.LargeScale set to 'off' 
uses the Levenberg-Marquardt method with line-search [1], [2], [3].
Alternatively, a Gauss-Newton method [4] with line-search may be selected.
The choice of algorithm is made by setting options.LevenbergMarquardt.
Setting options.LevenbergMarquardt to 'off' (and options.LargeScale to
'off') selects the Gauss-Newton method, which is generally faster when the
residual is small.

Fk x( ) 2 2k e
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kx2–+=

k 1 to 10=

F x( ) 2
2

4-120



lsqnonlin
The default line search algorithm, i.e., options.LineSearchType set to
'quadcubic', is a safeguarded mixed quadratic and cubic polynomial
interpolation and extrapolation method. A safeguarded cubic polynomial
method can be selected by setting options.LineSearchType to 'cubicpoly'.
This method generally requires fewer function evaluations but more gradient
evaluations. Thus, if gradients are being supplied and can be calculated
inexpensively, the cubic polynomial line search method is preferable. The
algorithms used are described fully in the Introduction to Algorithms chapter.

Diagnostics Large-scale optimization. The large-scale code will not allow equal upper and
lower bounds. For example if lb(2)==ub(2) then lsqlin gives the error:

Equal upper and lower bounds not permitted.

(lsqnonlin does not handle equality constraints, which is another way to
formulate equal bounds. If equality constraints are present, use fmincon,
fminimax or fgoalattain for alternative formulations where equality
constraints can be included.)

Limitations The function to be minimized must be continuous. lsqnonlin may only give
local solutions.

lsqnonlin only handles real variables. When x has complex variables, the
variables must be split into real and imaginary parts.

Large-scale optimization. The large-scale method for lsqnonlin does not solve
under-determined systems: it requires that the number of equations (i.e., the
number of elements of F) be at least as great as the number of variables. In the
under-determined case, the medium-scale algorithm will be used instead. (If
bound constraints exist, a warning will be issued and the problem will be
solved with the bounds ignored.) See Table 1-4 for more information on what
problem formulations are covered and what information must be provided.

The preconditioner computation used in the preconditioned conjugate gradient
part of the large-scale method forms JTJ (where J is the Jacobian matrix)
before computing the preconditioner; therefore, a row of J with many nonzeros,
which results in a nearly dense product JTJ, may lead to a costly solution
process for large problems.

If components of x have no upper (or lower) bounds, then lsqnonlin prefers
that the corresponding components of ub (or lb) be set to inf (or –inf for lower
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bounds) as opposed to an arbitrary but very large positive (or negative for
lower bounds) number.

Currently, if the analytical Jacobian is provided in fun, the options parameter
DerivativeCheck cannot be used with the large-scale method to compare the
analytic Jacobian to the finite-difference Jacobian. Instead, use the
medium-scale method to check the derivatives with options parameter
MaxIter set to 0 iterations. Then run the problem with the large-scale method.

Medium-scale optimization. The medium-scale algorithm does not handle bound
constraints.

Since the large-scale algorithm does not handle under-determined systems and
the medium-scale does not handle bound constraints, problems with both these
characteristics cannot be solved by lsqnonlin.

See Also optimset, lsqcurvefit, lsqlin

References [1] Levenberg, K.,“A Method for the Solution of Certain Problems in Least
Squares,” Quarterly Applied Math. 2, pp. 164-168, 1944.

[2] Marquardt, D.,“An Algorithm for Least–squares Estimation of Nonlinear
Parameters,” SIAM J. Applied Math. Vol. 11, pp. 431-441, 1963.

[3] Moré, J.J., “The Levenberg–Marquardt Algorithm: Implementation and
Theory,” Numerical Analysis, ed. G. A. Watson, Lecture Notes in Mathematics
630, Springer Verlag, pp. 105-116, 1977.

[4] Dennis, J.E., Jr., “Nonlinear Least Squares,” State of the Art in Numerical
Analysis, ed. D. Jacobs, Academic Press, pp. 269-312, 1977.

[5] Coleman, T.F. and Y. Li, “On the Convergence of Reflective Newton
Methods for Large-Scale Nonlinear Minimization Subject to Bounds,”
Mathematical Programming, Vol. 67, Number 2, pp. 189-224, 1994.

[6] Coleman, T.F. and Y. Li, “An Interior, Trust Region Approach for Nonlinear
Minimization Subject to Bounds,” SIAM Journal on Optimization, Vol. 6, pp.
418-445, 1996.
4-122



lsqnonneg
4lsqnonnegPurpose Solves the nonnegative least squares problem

where the matrix C and the vector d are the coefficients of the objective
function. The vector, x, of independent variables is restricted to be
nonnegative.

Syntax x = lsqnonneg(C,d)
x = lsqnonneg(C,d,x0)
x = lsqnonneg(C,d,x0,options)
[x,resnorm] = lsqnonneg(...)
[x,resnorm,residual] = lsqnonneg(...)
[x,resnorm,residual,exitflag] = lsqnonneg(...)
[x,resnorm,residual,exitflag,output] = lsqnonneg(...)
[x,resnorm,residual,exitflag,output,lambda] = lsqnonneg(...)

Description x = lsqnonneg(C,d) returns the vector x that minimizes norm(C*x–d) subject
to x >= 0. C and d must be real.

x = lsqnonneg(C,d,x0) uses x0 as the starting point if all x0 >= 0; otherwise,
the default is used. The default start point is the origin (the default is also used
when x0==[] or when only two input arguments are provided).

x = lsqnonneg(C,d,x0,options) minimizes with the optimization
parameters specified in the structure options.

[x,resnorm] = lsqnonneg(...) returns the value of the squared 2-norm of
the residual: norm(C*x–d)^2.

[x,resnorm,residual] = lsqnonneg(...) returns the residual, C*x–d.

[x,resnorm,residual,exitflag] = lsqnonneg(...) returns a value
exitflag that describes the exit condition of lsqnonneg.

[x,resnorm,residual,exitflag,output] = lsqnonneg(...) returns a
structure output that contains information about the optimization.

1
2--- Cx d–

2

x
min 2 such that x 0≥
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[x,resnorm,residual,exitflag,output,lambda] = lsqnonneg(...)
returns the Lagrange multipliers in the vector lambda.

Arguments The arguments passed into the function are described in Table 4-1. The
arguments returned by the function are described in Table 4-2. Details
relevant to lsqnonneg are included below for options, exitflag, lambda, and
output.

options Optimization parameter options. You can set or change the values
of these parameters using the optimset function.

• Display – Level of display. 'off' displays no output; 'iter'
displays output at each iteration; 'final' displays just the final
output.

• TolX – Termination tolerance on x.

exitflag Describes the exit condition:

• > 0 indicates that the function converged to a solution x.

• 0 indicates the iteration count was exceeded. Increasing the
tolerance TolX may lead to a solution.

lambda Vector containing the Lagrange multipliers: lambda(i)<=0 when
x(i) is (approximately) 0, and lambda(i) is (approximately) 0
when x(i)>0.

output A structure whose fields contain information about the
optimization:

• output.iterations – The number of iterations taken.

• output.algorithm – The algorithm used.
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Examples Compare the unconstrained least squares solution to the lsqnonneg solution
for a 4-by-2 problem.

C = [
0.0372    0.2869
0.6861    0.7071
0.6233    0.6245
0.6344    0.6170];

d = [
0.8587
0.1781
0.0747
0.8405];

[C\d, lsqnonneg(C,d)] =
–2.5627  0
3.1108  0.6929

[norm(C*(C\d)–d), norm(C*lsqnonneg(C,d)–d)] =
0.6674 0.9118

The solution from lsqnonneg does not fit as well as the least squares solution.
However, the nonnegative least-squares solution has no negative components.

Algorithm lsqnonneg uses the algorithm described in [1]. The algorithm starts with a set
of possible basis vectors and computes the associated dual vector lambda. It
then selects the basis vector corresponding to the maximum value in lambda in
order to swap it out of the basis in exchange for another possible candidate.
This continues until lambda <= 0.

Notes The nonnegative least squares problem is a subset of the constrained linear
least-squares problem. Thus, when C has more rows than columns (i.e., the
system is over-determined)

[x,resnorm,residual,exitflag,output,lambda] = lsqnonneg(C,d)
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is equivalent to

[m,n] = size(C);
[x,resnorm,residual,exitflag,output,lambda_lsqlin] = 

lsqlin(C,d,–eye(n,n),zeros(n,1));

except that lambda = –lambda_lsqlin.ineqlin.

For problems greater than order twenty, lsqlin may be faster than lsqnonneg,
otherwise lsqnonneg is generally more efficient.

See Also optimset, lsqlin, \

References [1] Lawson, C.L. and R.J. Hanson, Solving Least Squares Problems,
Prentice-Hall, Chapter 23, p. 161, 1974.
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4optimgetPurpose Get optimization options parameter values.

Syntax val = optimget(options,'param')
val = optimget(options,'param',default)

Description val = optimget(options,'param') returns the value of the specified
parameter in the optimization options structure options. You need to type only
enough leading characters to define the parameter name uniquely. Case is
ignored for parameter names.

val = optimget(options,'param',default) returns default if the specified
parameter is not defined in the optimization options structure options. Note
that this form of the function is used primarily by other optimization functions.

Examples This statement returns the value of the Display optimization options
parameter in the structure called my_options:

val = optimget(my_options,'Display')

This statement returns the value of the Display optimization options
parameter in the structure called my_options (as in the previous example)
except that if the Display parameter is not defined, it returns the value
'final':

optnew = optimget(my_options,'Display','final');

See Also optimset
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4optimsetPurpose Create or edit optimization options parameter structure.

Syntax options = optimset('param1',value1,'param2',value2,...)
optimset
options = optimset
options = optimset(optimfun)
options = optimset(oldopts,'param1',value1,...)
options = optimset(oldopts,newopts)

Description options = optimset('param1',value1,'param2',value2,...) creates an
optimization options parameter structure called options, in which the
specified parameters (param) have specified values. Any unspecified
parameters are set to [] (parameters with value [] indicate to use the default
value for that parameter when options is passed to the optimization function).
It is sufficient to type only enough leading characters to define the parameter
name uniquely. Case is ignored for parameter names.

optimset with no input or output arguments displays a complete list of
parameters with their valid values.

options = optimset (with no input arguments) creates an options structure
options where all fields are set to [].

options = optimset(optimfun) creates an options structure optionswith all
parameter names and default values relevant to the optimization function
optimfun.

options = optimset(oldopts,'param1',value1,...) creates a copy of
oldopts, modifying the specified parameters with the specified values.

options = optimset(oldopts,newopts) combines an existing options
structure oldopts with a new options structure newopts. Any parameters in
newopts with nonempty values overwrite the corresponding old parameters in
oldopts.

Parameters For more information about individual parameters, see the reference pages for
the optimization functions that use these parameters, or Table 4-3.
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In the lists below, values in { } denote the default value; some parameters have
different defaults for different optimization functions and so no values are
shown in { }.

Optimization parameters used by both large-scale and medium-scale
algorithms:

Diagnostics [ on | {off} ]

Display [ off | iter | {final} ]

GradObj [ on | {off} ]

Jacobian [ on | {off} ]

LargeScale [ {on} | off ]

MaxFunEvals [ positive integer ]

MaxIter [ positive integer ]

TolCon [ positive scalar ]

TolFun [ positive scalar ]

TolX [ positive scalar ]

Optimization parameters used by large-scale algorithms only:

Hessian [ on | {off} ]

HessPattern [ sparse matrix ]

JacobPattern [ sparse matrix ]

MaxPCGIter [ positive integer ]

PrecondBandWidth [ positive integer | Inf ]

TolPCG [ positive scalar | {0.1} ]

TypicalX [ vector ]

Optimization parameters used by medium-scale algorithms only:
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DerivativeCheck [ on | {off} ]

DiffMaxChange [ positive scalar | {1e–1} ]

DiffMinChange [ positive scalar | {1e–8} ]

GoalsExactAchieve [ positive scalar integer | {0} ]

GradConstr [ on | {off} ]

HessUpdate [ {bfgs} | dfp | gillmurray | steepdesc ]

LevenbergMarquardt [ on | off ]

LineSearchType [ cubicpoly | {quadcubic} ]

MeritFunction [ singleobj | {multiobj} ]

MinAbsMax [ positive scalar integer | {0} ]

Examples This statement creates an optimization options structure called options in
which the Display parameter is set to 'iter' and the TolFun parameter is set
to 1e–8:

options = optimset('Display','iter','TolFun',1e–8)

This statement makes a copy of the options structure called options, changing
the value of the TolX parameter and storing new values in optnew:

optnew = optimset(options,'TolX',1e–4);

This statement returns an optimization options structure options that
contains all the parameter names and default values relevant to the function
fminbnd:

options = optimset('fminbnd')

If you only want to see the default values for fminbnd, you can simply type

optimset fminbnd

or equivalently

optimset('fminbnd')

See Also optimget
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4quadprogPurpose Solve the quadratic programming problem

where H, A, and Aeq are matrices, and f, b, beq, lb, ub, and x are vectors.

Syntax x = quadprog(H,f,A,b)
x = quadprog(H,f,A,b,Aeq,beq)
x = quadprog(H,f,A,b,Aeq,beq,lb,ub)
x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0)
x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,options)
[x,fval] = quadprog(...)
[x,fval,exitflag] = quadprog(...)
[x,fval,exitflag,output] = quadprog(...)
[x,fval,exitflag,output,lambda] = quadprog(...)

Description x = quadprog(H,f,A,b) returns a vector x that minimizes
1/2*x'*H*x + f'*x subject to A*x <= b.

x = quadprog(H,f,A,b,Aeq,beq) solves the problem above while additionally
satisfying the equality constraints Aeq*x = beq.

x = quadprog(H,f,A,b,lb,ub) defines a set of lower and upper bounds on the
design variables, x, so that the solution is in the range lb <= x <= ub.

x = quadprog(H,f,A,b,lb,ub,x0) sets the starting point to x0.

x = quadprog(H,f,A,b,lb,ub,x0,options) minimizes with the optimization
parameters specified in the structure options.

[x,fval] = quadprog(...) returns the value of the objective function at x:
fval = 0.5*x'*H*x + f'*x.

[x,fval,exitflag] = quadprog(...) returns a value exitflag that
describes the exit condition of quadprog.

1
2---xTHx fTx+

x
min such that A x⋅ b≤

Aeq x⋅ beq=

lb x ub≤ ≤
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[x,fval,exitflag,output] = quadprog(...) returns a structure output
that contains information about the optimization.

[x,fval,exitflag,output,lambda] = quadprog(...) returns a structure
lambda whose fields contain the Lagrange multipliers at the solution x.

Arguments The arguments passed into the function are described in Table 4-1. The
arguments returned by the function are described in Table 4-2. Details
relevant to quadprog are included below for options, exitflag, lambda, and
output.

options Optimization parameter options. You can set or change the values
of these parameters using the optimset function. Some parameters
apply to all algorithms, some are only relevant when using the
large-scale algorithm, and others are only relevant when using the
medium-scale algorithm.

We start by describing the LargeScale option since it states a
preference for which algorithm to use. It is only a preference since
certain conditions must be met to use the large-scale algorithm.
For quadprog, when the problem has only upper and lower bounds,
i.e., no linear inequalities or equalities are specified, the default
algorithm is the large-scale method. Or, if the problem given to
quadprog has only linear equalities, i.e., no upper and lower
bounds or linear inequalities are specified, and the number of
equalities is no greater than the length of x, the default algorithm
is the large-scale method. Otherwise the medium-scale algorithm
will be used.

The parameter to set an algorithm preference:

• LargeScale – Use large-scale algorithm if possible when set to
'on'. Use medium-scale algorithm when set to 'off'.
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Parameters used by both the large-scale and medium-scale
algorithms:

• Diagnostics – Print diagnostic information about the function
to be minimized.

• Display – Level of display. 'off' displays no output; 'iter'
displays output at each iteration; 'final' displays just the final
output.

• MaxIter – Maximum number of iterations allowed.

• TolFun – Termination tolerance on the function value.

• TolX – Termination tolerance on x.

Parameters used by the large-scale algorithm only:

• MaxPCGIter – Maximum number of PCG (preconditioned
conjugate gradient) iterations (see the Algorithm section below).

• PrecondBandWidth – Upper bandwidth of preconditioner for
PCG. By default, diagonal preconditioning is used (upper
bandwidth of 0). For some problems, increasing the bandwidth
reduces the number of PCG iterations.

• TolPCG – Termination tolerance on the PCG iteration.

• TypicalX – Typical x values.

exitflag Describes the exit condition:

• > 0 indicates that the function converged to a solution x.

• 0 indicates that the maximum number of function evaluations or
iterations was reached.

• < 0 indicates that the function did not converge to a solution.

lambda A structure containing the Lagrange multipliers at the solution x
(separated by constraint type):

• lambda.lower for the lower bounds lb.

• lambda.upper for the upper bounds ub.

• lambda.ineqlin for the linear inequalities.

• lambda.eqlin for the linear equalities.
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Examples Find values of x that minimize

subject to

First note that this function may be written in matrix notation as

where

Enter these coefficient matrices:

H = [1 –1; –1 2] 
f = [–2; –6]
A = [1 1; –1 2; 2 1]
b = [2; 2; 3]
lb = zeros(2,1)

output A structure whose fields contain information about the
optimization:

• output.iterations – The number of iterations taken.

• output.algorithm – The algorithm used.

• output.cgiterations – The number of PCG iterations
(large-scale algorithm only).

• output.firstorderopt – A measure of first-order optimality
(large-scale algorithm only).
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Next, invoke a quadratic programming routine:

[x,fval,exitflag,output,lambda] = quadprog(H,f,A,b,[],[],lb)

This generates the solution

x = 
0.6667
1.3333

fval =
–8.2222

exitflag =
     1
output = 
       iterations: 3
        algorithm: 'medium-scale: active-set'
    firstorderopt: []
     cgiterations: []
lambda.ineqlin
ans =
    3.1111
    0.4444
         0
lambda.lower
ans =
     0
     0

Nonzero elements of the vectors in the fields of lambda indicate active
constraints at the solution. In this case, the first and second inequality
constraints (in lambda.ineqlin) are active constraints (i.e., the solution is on
their constraint boundaries). For this problem, all the lower bounds are
inactive.

Notes In general quadprog locates a local solution unless the problem is strictly
convex.

Better numerical results are likely if you specify equalities explicitly using Aeq
and beq, instead of implicitly using lb and ub.

If components of x have no upper (or lower) bounds, then quadprog prefers that
the corresponding components of ub (or lb) be set to Inf (or –Inf for lb) as
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opposed to an arbitrary but very large positive (or negative in the case of lower
bounds) number.

Large-scale optimization. If you do not supply x0, or x0 is not strictly feasible,
quadprog chooses a new strictly feasible (centered) starting point.

If an equality constrained problem is posed and quadprog detects negative
curvature, then the optimization terminates because the constraints are not
restrictive enough. In this case, exitflag is returned with the value –1, a
message is displayed (unless the options Display parameter is 'off'), and the
x returned is not a solution but a direction of negative curvature with respect
to H.

Algorithm Large-scale optimization. When the problem given to quadprog has only upper
and lower bounds, i.e., no linear inequalities or equalities are specified, the
default algorithm is the large-scale method. Or, if the problem given to
quadprog has only linear equalities, i.e., no upper and lower bounds or linear
inequalities are specified the default algorithm is the large-scale method.

This method is a subspace trust-region method based on the interior-reflective
Newton method described in [2]. Each iteration involves the approximate
solution of a large linear system using the method of preconditioned conjugate
gradients (PCG). See the trust-region and preconditioned conjugate gradient
method descriptions in the Large-Scale Algorithms chapter.

Medium-scale optimization. quadprog uses an active set method, which is also a
projection method, similar to that described in [1]. It finds an initial feasible
solution by first solving a linear programming problem. This method is
discussed in the Introduction to Algorithms chapter.

Diagnostics Large-scale optimization. The large-scale code will not allow equal upper and
lower bounds. For example if lb(2)==ub(2) then quadprog gives the error:

Equal upper and lower bounds not permitted in this large-scale 
method.
Use equality constraints and the medium-scale method instead.

If you only have equality constraints you can still use the large-scale method.
But if you have both equalities and bounds, you must use the medium-scale
method.
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Medium-scale optimization. When the solution is infeasible, quadprog gives this
warning:

Warning: The constraints are overly stringent;
there is no feasible solution.

In this case, quadprog produces a result that minimizes the worst case
constraint violation.

When the equality constraints are inconsistent, quadprog gives this warning:

Warning: The equality constraints are overly stringent;
there is no feasible solution.

Unbounded solutions,which can occur when the Hessian H is negative
semidefinite, may result in

Warning: The solution is unbounded and at infinity;
the constraints are not restrictive enough.

In this case, quadprog returns a value of x that satisfies the constraints.

Limitations At this time the only levels of display, using the Display parameter in options,
are 'off' and 'final'; iterative output using 'iter' is not available.

The solution to indefinite or negative definite problems is often unbounded (in
this case, exitflag is returned with a negative value to show a minimum was
not found); when a finite solution does exist, quadprog may only give local
minima since the problem may be nonconvex.

Large-scale optimization. The linear equalities cannot be dependent (i.e., Aeq
must have full row rank). Note that this means that Aeq cannot have more rows
than columns. If either of these cases occur, the medium-scale algorithm will
be called instead. See Table 1-4 for more information on what problem
formulations are covered and what information must be provided.

References [1] P.E. Gill, W. Murray, and M.H. Wright, Practical Optimization, Academic
Press, London, UK, 1981.

[2] Coleman, T.F. and Y. Li, “A Reflective Newton Method for Minimizing a
Quadratic Function Subject to Bounds on some of the Variables,” SIAM
Journal on Optimization, Vol. 6, Number 4, pp. 1040-1058, 1996.
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A
active constraints 4-94, 4-111, 4-135
active set method 2-28, 4-40, 4-94, 4-112, 4-136
arguments, additional 1-15
attainment factor 4-22
axis crossing. See zero of a function

B
banana function 2-4
BFGS formula 2-6, 4-40, 4-63
bisection search 4-90
bound constraints, large-scale 3-8
box constraints. See bound constraints

C
centering parameter 3-15
CG. See conjugate gradients
complementarity conditions 3-15
complex values 1-68
complex variables 4-105, 4-121
conjugate gradients 3-4
constrained minimization 4-30

large-scale example 1-43, 1-47
medium-scale example 1-8

constraints, positive 1-15
continuous function and gradient methods 2-4
convex problem 2-23
cubic interpolation 2-9
curve-fitting 4-98

D
data-fitting 4-98
data-fitting categories 1-3
dense columns, constraint matrix 3-16
dependent 4-39, 4-50
dependent constraints 3-8
DFP formula 4-63
direction of negative curvature 3-4
discontinuities 1-66, 2-4
discontinuous problems 4-54, 4-63
discrete variables 1-67
dual problem 3-14
duality gap 3-15

E
ε-constraint method 2-37
equality constraints

dense columns 1-53
medium-scale example 1-14

equality constraints inconsistent warning, quad-
prog 4-137

equality constraints, linear
large-scale 3-8

equation solving categories 1-3
error, out of memory 1-37

F
feasibility conditions 3-15
feasible point, finding 2-30
fgoalattain

example 1-26
fixed variables 3-17
fixed-step ODE solver 1-22
fmincon

large-scale example 1-43, 1-47
medium-scale example 1-8

fminimax
example 1-23
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I-2
fminunc
large-scale example 1-39
medium-scale example 1-6
warning messages 1-65

fsolve
large-scale example 1-33
medium-scale example 1-15

function arguments 4-6
function discontinuities 1-66

G
Gauss-Newton 3-11
Gauss-Newton method 2-18, 2-19, 2-22, 4-84,

4-105, 4-120
global minimum 1-65
global variables 1-15
goal attainment 2-39, 4-14

example 1-26
goaldemo 4-22
golden section search 4-28
gradient checking, analytic 1-13
gradient examples 1-11
gradient methods 2-4

H
Hessian modified heading 2-28
Hessian modified twice heading 2-28
Hessian sparsity structure 1-41
Hessian update 2-11, 2-27

I
inconsistent constraints 4-97
indefinite problems 4-137
infeasible problems 4-41
infeasible solution warning
linprog 4-97
quadprog 4-137

infinite loop 1-67
inline objects 1-63
input arguments 4-6
installation viii
integer variables 1-67
interior-point linear programming 3-14
iterative display 1-60

J
Jacobian examples 1-33
Jacobian sparsity pattern 1-35

K
Kuhn-Tucker equations 2-23

L
Lagrange multipliers

large-scale linear programming 3-17
large-scale examples 1-29
large-scale functionality coverage 1-29
least squares 2-19
least squares categories 1-3
Levenberg-Marquardt method 2-19, 2-20, 2-22,

4-84, 4-105, 4-120
line search 4-63, 4-84, 4-85, 4-105, 4-121
line search strategy 1-5
linear equations solve 4-83
linear least squares

constrained 4-107
large-scale algorithm 3-13
large-scale example 1-50
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linear least squares (continued)
nonnegative 4-123
unconstrained 4-111

linear programming 4-91
implementation 2-31
large-scale algorithm 3-14
large-scale example 1-52, 1-53
problem 2-2

linprog
large-scale example 1-52, 1-53

LIPSOL 3-14
lower bounds 1-9
lsqlin

large-scale example 1-50
lsqnonlin

convergence 1-68
large-scale example 1-35
medium-scale example 1-19

M
maximization 1-15
Mehrotra’s predictor-corrector algorithm 3-14,

3-15
merit function 2-31
minimax examples 1-23
minimax problem 4-43
minimization categories 1-2
multiobjective optimization 2-33, 4-14

examples 1-16

N
NCD Blockset 1-22
negative curvature direction 3-4, 3-6
negative definite problems 4-137
Nelder and Mead 2-4

Newton direction
approximate 3-4

Newton’s method 2-4
no derivative method 4-54
no update message 2-28
nonconvex problems 4-137
noninferior solution 2-34
nonlinear data-fitting 4-114
nonlinear equations, solving 4-77
nonlinear least squares 2-21, 4-98, 4-114

large-scale algorithm 3-11
large-scale example 1-35

nonlinear programming 2-2
nonlinear system of equations, large-scale exam-

ple 1-33
normal equations 3-11, 3-13
notation viii

O
objective function, undefined values 1-66
optimality conditions linear programming 3-14
optimization parameters structure 1-56, 4-127,

4-128
options parameters 4-6
out of memory error 1-37
output arguments 4-6
output display 1-58
output headings 1-60

large-scale algorithms 1-60
medium-scale algorithms 1-58

P
PCG. See preconditioned conjugate gradients
preconditioned conjugate gradients 3-4, 3-6, 3-16

algorithm 3-6
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I-4
preconditioner 1-34, 3-6
banded 1-43

predictor-corrector algorithm 3-15
preprocessing

linear programming 3-14, 3-17
primal problem 3-14
primal-dual algorithm 3-15
primal-dual interior-point 3-14
projection method 2-28, 4-136

Q
quadprog

large-scale example 1-49
quadratic interpolation 2-9
quadratic programming 2-2, 4-40, 4-131

large-scale algorithm 3-12
large-scale example 1-49

quasi-Newton method 2-5, 2-11, 4-63

R
reflective line search 3-12
reflective steps 3-9, 3-10
residual 2-18
Rosenbrock’s function 2-4

S
sampling interval 4-70
secular equation 3-3
semi-infinite constraints 4-65
Sherman-Morrison formula 3-16
signal processing example 1-25
simple bounds 1-9
simplex search 2-4, 4-54
Simulink, multiobjective example 1-16
singleton rows 3-17
sparsity pattern Jacobian 1-35
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