
PART I 

PROBLEM FORMULATION 

Formulating the problem is perhaps the most crucial step in optimization. Problem 
formulation requires identifying the essential elements of a conceptual or verbal 
statement of a given application and organizing them into a prescribed mathemati- 
cal form, namely, 

1. The objective function (economic criterion) 
2. The process model (constraints) 

The objective function represents such factors as profit, cost, energy, and yield 
in terms of the key variables of the process being analyzed. The process model and 
constraints describe the interrelationships of the key variables. It is important to 
learn a systematic approach for assembling the physical and empirical relations and 
data involved in an optimization problem, and Chapters 1, 2, and 3 cover the rec- 
ommended procedures. Chapter 1 presents six steps for optimization that can serve 
as a general guide for problem solving in design and operations analysis. Numer- 
ous examples of problem formulation in chemical engineering are presented to 
illustrate the steps. 

Chapter 2 summarizes the characteristics of process models and explains how 
to build one. Special attention is focused on developing mathematical models, par- 
ticularly empirical ones, by fitting empirical data using least squares, which itself 
is an optimization procedure. 

Chapter 3 treats the most common type of objective function, the cost or rev- 
enue function. Historically, the majority of optimization applications have involved 
trade-offs between capital costs and operating costs. The nature of the trade-off 
depends on a number of assumptions such as the desired rate of return on invest- 
ment, service life, depreciation method, and so on. While an objective function 
based on net present value is preferred for the purposes of optimization, discounted 
cash flow based on spreadsheet analysis can be employed as well. 

It is important to recognize that many possible mathematical problem formu- 
lations can result from an engineering analysis, depending on the assumptions 



2 PART I : Problem Formulation 

made and the desired accuracy of the model. To solve an optimization problem, the 
mathematical formulation of the model must mesh satisfactorily with the computa- 
tional algorithm to be used. A certain amount of artistry, judgment, and experience 
is therefore required during the problem formulation phase of optimization. 
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OPTIMIZATION IS THE use of specific methods to determine the most cost-effective 
and efficient solution to a problem or design for a process. This technique is one of 
the major quantitative tools in industrial decision making. A wide variety of prob- 
lems in the design, construction, operation, and analysis of chemical plants (as well 
as many other industrial processes) can be resolved by optimization. In this chap- 
ter we examine the basic characteristics of optimization problems and their solution 
techniques and describe some typical benefits and applications in the chemical and 
petroleum industries. 

1.1 WHAT OPTIMIZATION IS ALL ABOUT 

A well-known approach to the principle of optimization was first scribbled cen- 
turies ago on the walls of an ancient Roman bathhouse in connection with a choice 
between two aspirants for emperor of Rome. It read-"De doubus malis, minus est 
semper aligendum7'--of two evils, always choose the lesser. 

Optimization pervades the fields of science, engineering, and business. In 
physics, many different optimal principles have been enunciated, describing natu- 
ral phenomena in the fields of optics and classical mechanics. The field of statistics 
treats various principles termed "maximum likelihood," "minimum loss," and "least 
squares," and business makes use of "maximum profit," "minimum cost," "maxi- 
mum use of resources," "minimum effort," in its efforts to increase profits. A typi- 
cal engineering problem can be posed as follows: A process can be represented by 
some equations or perhaps solely by experimental data. You have a single perform- 
ance criterion in mind such as minimum cost. The goal of optimization is to find 
the values of the variables in the process that yield the best value of the perform- 
ance criterion. A trade-off usually exists between capital and operating costs. The 
described factors-process or model and the performance criterion-constitute the 
optimization "problem." 

Typical problems in chemical engineering process design or plant operation 
have many (possibly an infinite number) solutions. Optimization is concerned with 
selecting the best among the entire set by efficient quantitative methods. Comput- 
ers and associated software make the necessary computations feasible and cost- 
effective. To obtain useful information using computers, however, requires (I) crit- 
ical analysis of the process or design, (2) insight about what the appropriate 
performance objectives are (i.e., what is to be accomplished), and (3) use of past 
experience, sometimes called engineering judgment. 

1.2 WHY OPTIMIZE? 

Why are engineers interested in optimization? What benefits result from using this 
method rather than making decisions intuitively? Engineers work to improve the 
initial design of equipment and strive to enhance the operation of that equipment 
once it is installed so as to realize the largest production, the greatest profit, the 
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minimum cost, the least energy usage, and so on. Monetary value provides a con- 
venient measure of different but otherwise incompatible objectives, but not all 
problems have to be considered in a monetary (cost versus revenue) framework. 

In plant operations, benefits arise from improved plant performance, such as 
improved yields of valuable products (or reduced yields of contaminants), reduced 
energy consumption, higher processing rates, and longer times between shutdowns. 
Optimization can also lead to reduced maintenance costs, less equipment wear, and 
better staff utilization. In addition, intangible benefits arise from the interactions 
among plant operators, engineers, and management. It is extremely helpful to sys- 
tematically identify the objective, constraints, and degrees of freedom in a process 
or a plant, leading to such benefits as improved quality of design, faster and more 
reliable troubleshooting, and faster decision making. 

Predicting benefits must be done with care. Design and operating variables in 
most plants are always coupled in some way. If the fuel bill for a distillation col- 
umn is $3000 per day, a 5-percent savings may justify an energy conservation proj- 
ect. In a unit operation such as distillation, however, it is incorrect to simply sum 
the heat exchanger duties and claim a percentage reduction in total heat required. A 
reduction in the reboiler heat duty may influence both the product purity, which can 
translate to a change in profits, and the condenser cooling requirements. Hence, it 
may be misleading to ignore the indirect and coupled effects that process variables 
have on costs. 

What about the argument that the formal application of optimization is really 
not warranted because of the uncertainty that exists in the mathematical represen- 
tation of the process or the data used in the model of the process? Certainly such 
an argument has some merit. Engineers have to use judgment in applying opti- 
mization techniques to problems that have considerable uncertainty associated with 
them, both from the standpoint of accuracy and the fact that the plant operating 
parameters and environs are not always static. In some cases it may be possible to 
carry out an analysis via deterministic optimization and then add on stochastic fea- 
tures to the analysis to yield quantitative predictions of the degree of uncertainty. 
Whenever the model of a process is idealized and the input and parameter data only 
known approximately, the optimization results must be treated judiciously. They 
can provide upper limits on expectations. Another way to evaluate the influence of 
uncertain parameters in optimal design is to perform a sensitivity analysis. It is pos- 
sible that the optimum value of a process variable is unaffected by certain parame- 
ters (low sensitivity); therefore, having precise values for these parameters will not 
be crucial to finding the true optimum. We discuss how a sensitivity analysis is per- 
formed later on in this chapter. 

1.3 SCOPE AND HIERARCHY OF OPTIMIZATION 

Optimization can take place at many levels in a company, ranging from a complex 
combination of plants and distribution facilities down through individual plants, 
combinations of units, individual pieces of equipment, subsystems in a piece of 
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equipment, or even smaller entities (Beveridge and Schechter, 1970). Optimization 
problems can be found at all these levels. Thus, the scope of an optimization prob- 
lem can be the entire company, a plant, a process, a single unit operation, a single 
piece of equipment in that operation, or any intermediate system between these. 
The complexity of analysis may involve only gross features or may examine minute 
detail, depending upon the use to which the results will be put, the availability of 
accurate data, and the time available in which to carry out the optimization. In a 
typical industrial company optimization can be used in three areas (levels): (1) 
management, (2) process design and equipment specification, and (3) plant opera- 
tions (see Fig. 1.1). 

Management makes decisions concerning project evaluation, product selection, 
corporate budget, investment in sales versus research and development, and new 
plant construction (i.e., when and where should new plants be constructed). At this 
level much of the available information may be qualitative or has a high degree of 
uncertainty. Many management decisions for optimizing some feature(s) of a large 
company therefore have the potential to be significantly in error when put into prac- 
tice, especially if the timing is wrong. In general, the magnitude of the objective 
function, as measured in dollars, is much larger at the management level than at the 
other two levels. 

Individuals engaged in process design and equipment specification are con- 
cerned with the choice of a process and nominal operating conditions. They answer 
questions such as: Do we design a batch process or a continuous process? How 
many reactors do we use in producing a petrochemical? What should the configu- 
rations of the plant be, and how do we arrange the processes so that the operating 
efficiency of the plant is at a maximum? What is the optimum size of a unit or com- 
bination of units? Such questions can be resolved with the aid of so-called process 

FIGURE 1.1 
Hierarchy of levels of optimization. 
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design simulators or flowsheeting programs. These large computer programs carry 
out the material and energy balances for individual pieces of equipment and com- 
bine them into an overall production unit. Iterative use of such a simulator is often 
necessary to arrive at a desirable process flowsheet. 

Other, more specific decisions are made in process design, including the actual 
choice of equipment (e.g., more than ten different types of heat exchangers are 
available) and the selection of construction materials of various process units. 

The third constituency employing optimization operates on a totally different 
time scale than the other two. Process design and equipment specification is usu- 
ally performed prior to the implementation of the process, and management deci- 
sions to implement designs are usually made far in advance of the process design 
step. On the other hand, optimization of operating conditions is carried out 
monthly, weekly, daily, hourly, or even, at the extreme, every minute. Plant opera- 
tions are concerned with operating controls for a given unit at certain temperatures, 
pressures, or flowrates that are the best in some sense. For example, the selection 
of the percentage of excess air in a process heater is critical and involves balancing 
the fuel-air ratio to ensure complete combustion while making the maximum use 
of the heating potential of the fuel. 

Plant operations deal with the allocation of raw materials on a daily or weekly 
basis. One classical optimization problem, which is discussed later in this text, is 
the allocation of raw materials in a refinery. Typical day-to-day optimization in a 
plant minimizes steam consumption or cooling water consumption. 

Plant operations are also concerned with the overall picture of shipping, trans- 
portation, and distribution of products to engender minimal costs. For example, the 
frequency of ordering, the method of scheduling production, and scheduling deliv- 
ery are critical to maintaining a low-cost operation. 

The following attributes of processes affecting costs or profits make them 
attractive for the application of optimization: 

1. Sales limited by production: If additional products can be sold beyond current 
capacity, then economic justification of design modifications is relatively easy. 
Often, increased production can be attained with only slight changes in operat- 
ing costs (raw materials, utilities, etc.) and with no change in investment costs. 
This situation implies a higher profit margin on the incremental sales. 

2. Sales limited by market: This situation is susceptible to optimization only if 
improvements in efficiency or productivity can be obtained; hence, the economic 
incentive for implementation in this case may be less than in the first example 
because no additional products are made. Reductions in unit manufacturing 
costs (via optimizing usage of utilities and feedstocks) are generally the main 
targets. 

3. Large unit throughputs: High production volume offers great potential for 
increased profits because small savings in production costs per unit are greatly 
magnified. Most large chemical and petroleum processes fall into this classifi- 
cation. 

4. High raw material or energy consumption: Significant savings can be made by 
reducing consumption of those items with high unit costs. 
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5. Product quality exceeds product spec@cations: If the product quality is signifi- 
cantly better than that required by the customer, higher than necessary produc- 
tion costs and wasted capacity may occur. By operating close to customer spec- 
ification (constraints), cost savings can be obtained. 

6. Losses of valuable components through waste streams: The chemical analysis of 
various plant exit streams, both to the air and water, should indicate if valuable 
materials are being lost. Adjustment of air-fuel ratios in furnaces to minimize 
hydrocarbon emissions and hence fuel consumption is one such example. Pollu- 
tion regulations also influence permissible air and water emissions. 

7. High labor costs: In processes in which excessive handling is required, such as 
in batch operation, bulk quantities can often be handled at lower cost and with a 
smaller workforce. Revised layouts of facilities can reduce costs. Sometimes no 
direct reduction in the labor force results, but the intangible benefits of a less- 
ened workload can allow the operator to assume greater responsibility. 

Two valuable sources of data for identifying opportunities for optimization 
include (1) profit and loss statements for the plant or the unit and (2) the periodic 
operating records for the plant. The profit and loss statement contains much valu- 
able information on sales, prices, manufacturing costs, and profits, and the operat- 
ing records present information on material and energy balances, unit efficiencies, 
production levels, and feedstock usage. 

Because of the complexity of chemical plants, complete optimization of a 
given plant can be an extensive undertaking. In the absence of complete optimiza- 
tion we often rely on "incomplete optimization," a special variety of which is 
termed suboptimization. Suboptimization involves optimization for one phase of an 
operation or a problem while ignoring some factors that have an effect, either obvi- 
ous or indirect, on other systems or processes in the plant. Suboptimization is often 
necessary because of economic and practical considerations, limitations on time or 
personnel, and the difficulty of obtaining answers in a hurry. Suboptimization is 
useful when neither the problem formulation nor the available techniques permits 
obtaining a reasonable solution to the full problem. In most practical cases, subop- 
timization at least provides a rational technique for approaching an optimum. 

Recognize, however, that suboptimization of all elements does not necessarily 
ensure attainment of an overall optimum for the entire system. Subsystem objec- 
tives may not be compatible nor mesh with overall objectives. 

1.4 EXAMPLES OF APPLICATIONS OF OPTIMIZATION 

Optimization can be applied in numerous ways to chemical processes and plants. 
Typical projects in which optimization has been used include 

1. Determining the best sites for plant location. 
2. Routing tankers for the distribution of crude and refined products. 
3. Sizing and layout of a pipeline. 
4. Designing equipment and an entire plant. 
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5. Scheduling maintenance and equipment replacement. 
6. Operating equipment, such as tubular reactors, columns, and absorbers. 
7. Evaluating plant data to construct a model of a process. 
8. Minimizing inventory charges. 
9. Allocating resources or services among several processes. 

10. Planning and scheduling construction. 

These examples provide an introduction to the types of variables, objective func- 
tions, and constraints that will be encountered in subsequent chapters. 

In this section we provide four illustrations of "optimization in practice." that 
is, optimization of process operations and design. These examples will help illus- 
trate the general features of optimization problems, a topic treated in more. detail 
in Section 1.5. 

EXAMPLE 1.1 OPTIMAL INSULATION THICKNESS 

Insulation design is a classic example of overall cost saving that is especially perti- 
nent when fuel costs are high. The addition of insulation should save money through 
reduced heat losses; on the other hand, the insulation material can be expensive. The 
amount of added insulation needed can be determined by optimization. 

Assume that the bare surface of a vessel is at 700°F with an ambient temperature 
of 70°F. The surface heat loss is 4000 Btu/(h)(ft2). Add 1 in. of calcium silicate insu- 
lation and the loss will drop to 250 Btu/(h)(ft2). At an installed cost of $4.00 ft2 and a 
cost of energy at $5.00/106 Btu, a savings of $164 per year (8760 hours of operation) 
per square foot would be realized. A simplified payback calculation shows a payback 
period of 

$4.00/(ft2) 
= 0.0244 year, or 9 days 

$164/(ft2) (year) 

As additional inches of insulation are added, the increments must be justified by the 
savings obtained. Figure El .  1 shows the outcome of adding more layers of insulation. 
Since insulation can only be added in 0.5-in. increments, the possible capital costs are 
shown as a series of dots; these costs are prorated because the insulation lasts for sev- 
eral years before having to be replaced. In Figure El . l  the energy loss cost is a con- 
tinuous curve because it can be calculated directly from heat transfer principles. The 
total cost is also shown as a continuous function. Note that at some point total costs 
begin increasing as the insulation thickness increases because little or no benefit in 
heat conservation results. The trade-off between energy cost and capital cost, and the 
optimum insulation thickness, can be determined by optimization. Further discussion 
of capital versus operating costs appears in Chapter 3; in particular, see Example 3.3. 

EXAMPLE 1.2 OPTIMAL OPERATING CONDITIONS 
OF A BOILER 

Another example of optimization can be encountered in the operation of a boiler. 
Engineers focus attention on utilities and powerhouse operations within refineries and 
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Cost ($/year) 

Insulation thickness 

FIGURE El. l  
The effect of insulation thickness on total cost (x* = optimum 
thickness). Insulation can be purchased in 0.5-in. increments. (The total 
cost function is shown as a smooth curve for convenience, although the 
sum of the two costs would not actually be smooth.) 

process plants because of the large amounts of energy consumed by these plants and 
the potential for significant reduction in the energy required for utilities generation 
and distribution. Control of environmental emissions adds complexity and constraints 
in optimizing boiler operations. In a boiler it is desirable to optimize the air-fuel ratio 
so that the thermal efficiency is maximized; however, environmental regulations 
encourage operation under fuel-rich conditions and lower combustion temperatures in 
order to reduce the emissions of nitrogen oxides (NO,). Unfortunately, such operating 
conditions also decrease efficiency because some unburned fuel escapes through the 
stacks, resulting in an increase in undesirable hydrocarbon (HC) emissions. Thus, a 
conflict in operating criteria arises. 

Figure E1.2a illustrates the trade-offs between efficiency and emissions, sug- 
gesting that more than one performance criterion may exist: We are forced to consider 
maximizing efficiency versus minimizing emissions, resulting in some compromise 
of the two objectives. 

Another feature of boiler operations is the widely varying demands caused by 
changes in process operations, plant unit start-ups and shutdowns, and daily and sea- 
sonal cycles. Because utility equipment is often operated in parallel, demand swings 
commonly affect when another boiler, turbine, or other piece of equipment should be 
brought on line and which one it should be. 

Determining this is complicated by the feature that most powerhouse equipment 
cannot be operated continuously all the way down to the idle state, as illustrated by 
Figure E1.2b for boilers and turbines. Instead, a range of continuous operation may 
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FIGURE E1.2~  
Efficiency and emissions of a boiler as a function of air-fuel ratio. (1.0 = 
stoichiometric air-fuel ratio.) 

exist for certain conditions, but a discrete jump to a different set of conditions (here 
idling conditions) may be required if demand changes. In formulating many opti- 
mization problems, discrete variables (on-off, high-low, integer 1, 2, 3,4, etc.) must 
be accommodated. 

EXAMPLE 1.3 OPTIMUM DISTILLATION REFLUX 

Prior to 1974, when fuel costs were low, distillation column trains used a strategy 
involving the substantial consumption of utilities such as steam and cooling water in 
order to maximize separation (i.e., product purity) for a given tower. However, the 
operation of any one tower involves certain limitations or constraints on the process, 
such as the condenser duty, tower tray flooding, or reboiler duty. 

The need for energy conservation suggests a different objective, namely mini- 
mizing the reflux ratio. In this circumstance, one can ask: How low can the reflux 
ratio be set? From the viewpoint of optimization, there is an economic minimum 
value below which the energy savings are less than the cost of product quality degra- 
dation. Figures E1.3a and E1.3b illustrate both alternatives. Operators tend to over- 
reflux a column because this strategy makes it easier to stay well within the product 
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FIGURE E1.2b 
Discontinuity in operating regimen. 
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FIGURE El.% 
Illustration of optimal reflux for different fuel costs. 
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FIGURE E1.3b 
Total profit for different fuel costs. 

specifications. Often columns are operated with a fixed flow control for reflux so that 
the reflux ratio is higher than needed when feed rates drop off. This issue is discussed 
in more detail in Chapter 12. 

EXAMPLE 1.4 MULTIPLANT PRODUCT DISTRIBUTION 

A common problem encountered in large chemical companies involves the distribu- 
tion of a single product (Y) manufactured at several plant locations. Generally, the 
product needs to be delivered to several customers located at various distances from 
each plant. It is, therefore, desirable to determine how much Y must be produced at 
each of m plants (Y,, Y,, . . . , Y,) and how, for example, Y, should be allocated to each 
of n demand points (Y,,, Y,,, . . . , Y,,). The cost-minimizing solution to this prob- 
lem not only involves the transportation costs between each supply and demand point 
but also the production cost versus capacity curves for each plant. The individual 
plants probably vary with respect to their nominal production rate, and some plants 
may be more efficient than others, having been constructed at a later date. Both of 
these factors contribute to a unique functionality between production cost and pro- 
duction rate. Because of the particular distribution of transportation costs, it may be 
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desirable to manufacture more product from an old, inefficient plant (at higher cost) 
than from a new, efficient one because new customers may be located very close to 
the old plant. On the other hand, if the old plant is operated far above its design rate, 
costs could become exorbitant, forcing a reallocation by other plants in spite of high 
transportation costs. In addition, no doubt constraints exist on production levels from 
each plant that also affect the product distribution plan. 

1.5 THE ESSENTIAL FEATURES OF OPTIMIZATION PROBLEMS 

Because the solution of optimization problems involves various features of mathe- 
matics, the formulation of an optimization problem must use mathematical expres- 
sions. Such expressions do not necessarily need to be very complex. Not all prob- 
lems can be stated or analyzed quantitatively, but we will restrict our coverage to 
quantitative methods. From a practical viewpoint, it is important to mesh properly 
the problem statement with the anticipated solution technique. 

A wide variety of optimization problems have amazingly similar structures. 
Indeed, it is this similarity that has enabled the recent progress in optimization tech- 
niques. Chemical engineers, petroleum engineers, physicists, chemists, and traffic 
engineers, among others, have a common interest in precisely the same mathemat- 
ical problem structures, each with a different application in the real world. We can 
make use of this structural similarity to develop a framework or methodology 
within which any problem can be studied. This section describes how any process 
problem, complex or simple, for which one desires the optimal solution should be 
organized. To do so, you must (a) consider the model representing the process and 
(b) choose a suitable objective criterion to guide the decision making. 

Every optimization problem contains three essential categories: 

1. At least one objective function to be optimized (profit function, cost function, 
etc.). 

2. Equality constraints (equations). 
3. Inequality constraints (inequalities). 

Categories 2 and 3 constitute the model of the process or equipment; category 1 is 
sometimes called the economic model. 

By a feasible solution of the optimization problem we mean a set of variables 
that satisfy categories 2 and 3 to the desired degree of precision. Figure 1.2 illus- 
trates the feasible region or the region of feasible solutions defined by categories 2 
and 3. In this case the feasible region consists of a line bounded by two inequality 
constraints. An optimal solution is a set of values of the variables that satisfy the 
components of categories 2 and 3; this solution also provides an optimal value for 
the function in category 1. In most cases the optimal solution is a unique one; in 
some it is not. If you formulate the optimization problem so that there are no resid- 
ual degrees of freedom among the variables in categories 2 and 3, optimization is 



c H A P T E R 1 : The Nature and Organization of Optimization Problems 15 

Axis is 
linear 
inequality 
constraint 

constraints 

along the heavy line 

linear 
inequality 

FIGURE 1.2 
Feasible region for an optimization problem involving two independent 
variables. The dashed lines represent the side of the inequality constraints 
in the plane that form part of the infeasible region. The heavy line shows 
the feasible region. 

not needed to obtain a solution for a problem. More specifically, if me equals the 
number of independent consistent equality constraints and mi equals the number of 
independent inequality constraints that are satisfied as equalities (equal to zero), 
and if the number of variables whose values are unknown is equal to me + mi, then 
at least one solution exists for the relations in components 2 and 3 regardless of the 
optimization criterion. (Multiple solutions may exist when models in categories 2 
and 3 are composed of nonlinear relations.) If a unique solution exists, no opti- 
mization is needed to obtain a solution--one just solves a set of equations and need 
not worry about optimization methods because the unique feasible solution is by 
definition the optimal one. 

On the other hand, if more process variables whose values are unknown exist 
in category 2 than there are independent equations, the process model is called 
underdetermined; that is, the model has an infinite number of feasible solutions so 
that the objective function in category 1 is the additional criterion used to reduce 
the number of solutions to just one (or a few) by specifying what is the "best" solu- 
tion. Finally, if the equations in category 2 contain more independent equations 
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than variables whose values are unknown, the process model is overdetermined and 
no solution satisfies all the constraints exactly. To resolve the difficulty, we some- 
times choose to relax some or all of the constraints. A typical example of an overde- 
termined model might be the reconciliation of process measurements for a material 
balance. One approach to yield the desired material balance would be to resolve the 
set of inconsistent equations by minimizing the sum of the errors of the set of equa- 
tions (usually by a procedure termed least squares). 

In this text the following notation will be used for each category of the opti- 
mization problem: 

Minimize: f (x) objective function (a) 

Subject to: h(x) = 0 equality constraints (b) 

g(x) r 0 inequality constraints (4 

where x is a vector of n variables (x,, x2, . . . , x,), h(x) is a vector of equations of 
dimension m,, and g(x) is a vector of inequalities of dimension m,. The total num- 
ber of constraints is m = (m, + m,). 

EXAMPLE 1.5 OPTIMAL SCHEDULING: FORMULATION OF 
THE OPTIMATION PROBLEM 

In this example we illustrate the formulation of the components of an optimization 
problem. 

We want to schedule the production in two plants, A and B, each of which can 
manufacture two products: 1 and 2. How should the scheduling take place to maxi- 
mize profits while meeting the market requirements based on the following data: 

Material 
processed Profit 
(lblday) ($nb) 

Plant 1 2 1 2 

How many days per year (365 days) should each plant operate processing each kind 
of material? Hints: Does the table contain the variables to be optimized? How do you 
use the information mathematically to formulate the optimization problem? What 
other factors must you consider? 

Solution. How should we start to convert the words of the problem into mathematical 
statements? First, let us define the variables. There will be four of them (tAl,tA2, t,,, 
and t,,, designated as a set by the vector t) representing, respectively, the number of 
days per year each plant operates on each material as indicated by the subscripts. 

What is the objective function? We select the annual profit so that 
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Next, do any equality constraints evolve from the problem statement or from implicit 
assumptions? If each plant runs 365 days per year, two equality constraints arise: 

Finally, do any inequality constraints evolve from the problem statement or implicit 
assumptions? On first glance it may appear that there are none, but further thought 
indicates t must be nonnegative since negative values of t have no physical meaning: 

Do negative values of the coefficients S have physical meaning? 
Other inequality constraints might be added after further analysis, such as a lim- 

itation on the total amount of material 2 that can be sold (L,): 

or a limitation on production rate for each product at each plant, namely 

To find the optimal t, we need to optimize (a) subject to constraints (b) to (g). 

EXAMPLE 1.6 MATERIAL BALANCE RECONCILIATION 

Suppose the flow rates entering and leaving a process are measured periodically. 
Determine the best value for stream A in kg/h for the process shown from the three 
hourly measurements indicated of B and C in Figure E1.6, assuming steady-state 
operation at a fixed operating point. The process model is 

where M is the mass per unit time of throughput. 

Solution. We need to set up the objective function first. Let us minimize the sum of 
the squares of the deviations between input and output as the criterion so that the 
objective function becomes 

A sum of squares is used since this guarantees that f > 0 for all values of MA; a min- 
imum at f = 0 implies no error. 
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FIGURE E1.6 

A > 

No equality constraints remain in the problem. Are there any inequality con- 
straints? (Hint: What about MA?) The optimum value of MA can be found by differ- 
entiating f with respect to MA; this leads to an optimum value for MA of 82.4 and is 
the same result as that obtained by computing from the averaged measured values, 
MA = & - M,. Other methods of reconciling material (and energy) balances are 
discussed by Romagnoli and Sanchez (1999). 

(a) 92.4 kgh , (b) 94.3 kgm 
(c) 93.8 kgh 

1.6 GENERAL PROCEDURE FOR SOLVING OPTIMIZATION 
PROBLEMS 

+ 

No single method or algorithm of optimization can be applied efficiently to all 
problems. The method chosen for any particular case depends primarily on (1) the 
character of the objective function and whether it is known explicitly, (2) the nature 
of the constraints, and (3) the number of independent and dependent variables. 

Table 1.1 lists the six general steps for the analysis and solution of optirniza- 
tion problems. You do not have to follow the cited order exactly, but you should 
cover all of the steps eventually. Shortcuts in the procedure are allowable, and the 
easy steps can be performed first. Each of the steps will be examined in more detail 
in subsequent chapters. 

Remember, the general objective in optimization is to choose a set of values of 
the variables subject to the various constraints that produce the desired optimum 
response for the chosen objective function. 

Steps 1, 2, and 3 deal with the mathematical definition of the problem, that is, 
identification of variables, specification of the objective function, and statement of 
the constraints. We devote considerable attention to problem formulation in the 
remainder of this chapter, as well as in Chapters 2 and 3. If the process to be opti- 
mized is very complex, it may be necessary to reformulate the problem so that it 
can be solved with reaionable effort. 

Step 4 suggests that the mathematical statement of the problem be simplified 
as much as possible without losing the essence of the problem. First, you might 
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TABLE 1.1 
The six steps used to solve optimization problems 

1. Analyze the process itself so that the process variables and specific characteris- 
tics of interest are defined; that is, make a list of all of the variables. 

2. Determine the criterion for optimization, and specify the objective function in 
terms of the variables defined in step 1 together with coefficients. This step pro- 
vides the performance model (sometimes called the economic model when 
appropriate). 

3. Using mathematical expressions, develop a valid process or equipment model 
that relates the input-output variables of the process and associated coefficients. 
Include both equality and inequality constraints. Use well-known physical prin- 
ciples (mass balances, energy balances), empirical relations, implicit concepts, 
and external restrictions. Identify the independent and dependent variables to get 
the number of degrees of freedom. 

4. If the problem formulation is too large in scope: 
(a) break it up into manageable parts or 
(b) simplify the objective function and model 

5. Apply a suitable optimization technique to the mathematical statement of the 
problem. 

6. Check the answers, and examine the sensitivity of the result to changes in the 
coefficients in the problem and the assumptions. 

decide to ignore those variables that have an insignificant effect on the objective 
function. This step can be done either ad hoc, based on engineering judgment, or 
by performing a mathematical analysis and determining the weights that should be 
assigned to each variable via simulation. Second, a variable that appears in a sim- 
ple form within an equation can be eliminated; that is, it can be solved for explic- 
itly and then eliminated from other equations, the inequalities, and the objective 
function. Such variables are then deemed to be dependent variables. 

As an example, in heat exchanger design, you might initially include the fol- 
lowing variables in the problem: heat transfer surface, flow rates, number of shell 
passes, number of tube passes, number and spacing of the baffles, length of the 
exchanger, diameter of the tubes and shell, the-approach temperature, and the pres- 
sure drop. Which of the variables are independent and which are not? This question 
can become quite complicated in a problem with many variables. You will find that 
each problem has to be analyzed and treated as an individual case; generalizations 
are difficult. Often the decision is quite arbitrary although instinct indicates that the 
controllable variables be initially selected as the independent ones. 

If an engineer is familiar with a particular heat exchanger system, he or she 
might decide that certain variables can be ignored based on the notion of the con- 
trolling or dominant heat transfer coefficient. In such a case only one of the flow- 
ing streams is important in terms of calculating the heat tr&sfer in the system, and 
the engineer might decide, at least initially, to eliminate from consideration those 
variables related to the other stream. 
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A third strategy can be carried out when the problem has many constraints and 
many variables. We assume that some variables are fixed and let the remainder of 
the variables represent degrees of freedom (independent variables) in the optimiza- 
tion procedure. For example, the optimum pressure of a distillation column might 
occur at the minimum pressure (as limited by condenser cooling). 

Finally, analysis of the objective function may permit some simplification of 
the problem. For example, if one product (A) from a plant is worth $30 per pound 
and all other products from the plant are worth $5 or less per pound, then we might 
initially decide to maximize the production of A only. 

Step 5 in Table 1.1 involves the computation of the optimum point. Quite a few 
techniques exist to obtain the optimal solution for a problem. We describe several 
methods in detail later on. In general, the solution of most optimization problems 
involves the use of a computer to obtain numerical answers. It is fair to state that 
over the past 20 years, substantial progress has been made in developing efficient 
and robust digital methods for optimization calculations. Much is known about 
which methods are most successful, although comparisons of candidate methods 
often are ad hoc, based on test cases of simple problems. Virtually all numerical 
optimization methods involve iteration, and the effectiveness of a given technique 
often depends on a good first guess as to the values of the variables at the optimal 
solution. 

The last entry in Table 1.1 involves checking the candidate solution to deter- 
mine that it is indeed optimal. In some problems you can check that the sufficient 
conditions for an optimum are satisfied. More often, an optimal solution may exist, 
yet you cannot demonstrate that the sufficient conditions are satisfied. All you can 
do is show by repetitive numerical calculations that the value of the objective func- 
tion is superior to all known alternatives. A second consideration is the sensitivity 
of the optimum to changes in parameters in the problem statement. A sensitivity 
analysis for the objective function value is important and is illustrated as part of the 
next example. 

EXAMPLE 1.7 THE SIX STEPS OF OPTIMIZATION FOR A 
MANUFACTURING PROBLEM 

This example examines a simple problem in detail so that you can understand how to 
execute the steps for optimization listed in Table 1.1. You also will see in this exam- 
ple that optimization can give insight into the nature of optimal operations and how 
optimal results might compare with the simple or arbitrary rules of thumb so often 
used in practice. 

Suppose you are a chemical distributor who wishes to optimize the inventory of 
a specialty chemical. You expect to sell Q barrels of this chemical over a given year 
at a fixed price with demand spread evenly over the year. If Q = 100,000 barrels 
(units) per year, you must decide on a production schedule. Unsold production is kept 
in inventory. To determine the optimal production schedule you must quantify those 
aspects of the problem that are important from a cost viewpoint [Baumol(1972)]. 

Step 1. One option is to produce 100,000 units in one run at the beginning of the 
year and allow the inventory to be reduced to zero at the end of the year (at which time 
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another 100,000 units are manufactured). Another option is to make ten runs of 
10,000 apiece. It is clear that much more money is tied up in inventory with the for- 
mer option than in the latter. Funds tied up in inventory are funds that could be 
invested in other areas or placed in a savings account. You might therefore conclude 
that it would be cheaper to make the product ten times a year. 

However, if you extend this notion to an extreme and make 100,000 production 
runs of one unit each (actually one unit every 3 15 seconds), the decision obviously is 
impractical, since the cost of producing 100,000 units, one unit at a time, will be exor- 
bitant. It therefore appears that the desired operating procedure lies somewhere in 
between the two extremes. To arrive at some quantitative answer to this problem, first 
define the three operating variables that appear to be important: number of units of 
each run (D), the number of runs per year (n), and the total number of units produced 
per year (Q). Then you must obtain details about the costs of operations. In so doing, 
a cost (objective) function and a mathematical model will be developed, as discussed 
later on. After obtaining a cost model, any constraints on the variables are identified, 
which allows selection of independent and dependent variables. 

Step 2. Let the business costs be split up into two categories: (1) the carrying cost 
or the cost of inventory and (2) the cost of production. Let D be the number of units 
produced in one run, and let Q (annual production level) be assigned a known value. 
If the problem were posed so that a minimum level of inventory is specified, it would 
not change the structure of the problem. 

The cost of the inventory not only includes the cost of the money tied up in the 
inventory, but also a storage cost, which is a function of the inventory size. Warehouse 
space must exist to store all the units produced in one run. In the objective function, let 
the cost of carrying the inventory be KID, where the parameter K, essentially lumps 
together the cost of working capital for the inventory itself and the storage costs. 

Assume that the annual production cost in the objective function is proportional 
to the number of production runs required. The cost per run is assumed to be a linear 
function of D, given by the following equation: 

Cost per run = K2 + K3D (a) 

The cost parameter K2 is a setup cost and denotes a fixed cost of production-quip- 
ment must be made ready, cleaned, and so on. The parameter K3 is an operating cost 
parameter. The operating cost is assumed to be proportional to the number of units 
manufactured. Equation (a) may be an unrealistic assumption because the incremen- 
tal cost of manufacturing could decrease somewhat for large runs; consequently, 
instead of a linear function, you might choose a nonlinear cost function of the form 

Cost per run = K, + K4D1I2 (b) 

as is shown in Figure E1.7. The effect of this alternative assumption will be discussed 
later. The annual production cost can be found by multiplying either Equation (a) or 
(b) by the number n of production runs per year. 

The total annual manufacturing cost C for the product is the sum of the carrying 
costs and the production costs, namely 

Step 3. The objective function in (c) is a function of two variables: D and n. How- 
ever, D and n are directly related, namely n = QLD. Therefore, only one independent 
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FIGURE E1.7 
Nonlinear cost function for manufacturing. 

variable exists for this problem, which we select to be D. The dependent variable is 
therefore n. Eliminating n from the objective function in (c) gives 

What other constraints exist in this problem? None 'are stated explicitly, but sev- 
eral implicit constraints exist. One of the assumptions made in arriving at Equation 
(c) is that over the course of one year, production runs of integer quantities may be 
involved. Can D be treated as a continuous variable? Such a question is crucial prior 
to using differential calculus to solve the problem. The occurrence of integer variables 
in principle prevents the direct calculation of derivatives of functions of integer vari- 
ables. In the simple example here, with D being the only variable and a large one, you 
can treat D as continuous. After obtaining the optimal D, the practical value for D is 
obtained by rounding up or down. There is no guarantee that n = Q/D is an integer; 
however, as long as you operate from year to year there should be no restriction on n. 

What other constraints exist? You know that D must be positive. Do any equality 
c~nstraints relate D to the other known parameters of the model? If so, then the sole 
degree of freedom in the process model could be eliminated and optimization would 
not be needed! 

Step 4. Not needed. 
Step 5. Look at the total cost function, Equation (c) .  Observe that the cost func- 

tion includes a constant term, K3Q. If the total cost function is differentiated, the term 
K3Q vanishes and thus K3 does not enter into the determination of the optimal value 
for D. K,, however, contributes to the total cost. 

Two approaches can be employed to solve for the optimal value of D: analytical 
or numerical. A simple problem has been formulated so that an analytical solution can 
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be obtained. Recall from calculus that if you differentiate the cost function with 
respect to D and equate the total derivative to zero 

you can obtain the optimal solution for D 

Equation (f) was obtained without knowing specific numerical values for the param- 
eters. If K,, K2, or Q change for one reason or another, then the calculation of the new 
value of D"pt is straightforward. Thus, the virtue of an analytical solution (versus a 
numerical one) is apparent. 

Suppose you are given values of K, = 1.0, K2 = 10,000, K3 = 4.0, and Q = 
100,000. Then DOpt from Equation (f) is 3 1,622. 

You can also quickly verify for this problem that DOpt from Equation (f) mini- 
mizes the objective function by taking the second derivative of C and showing that it 
is positive. Equation (g) helps demonstrate the sufficient conditions for a minimum. 

Details concerning the necessary and sufficient conditions for minimization are pre- 
sented in Chapter 4. 

Another benefit of obtaining an analytical solution is that you can gain some 
insight into how production should be scheduled. For example, suppose the optimum 
number of production runs per year was 4.0 (25,000 units per run), and the projected 
demand for the product was doubled (Q = 200,000) for the next year. Using intuition 
you might decide to double the number of units produced (50,000 units) with 4.0 runs 
per year. However, as can be seen from the analytical solution, the new value of DOpt 
should be selected according to the square root of Q rather than the first power of Q. 
This relationship is known as the economic order quantity in inventory control and 
demonstrates some of the pitfalls that may result from making decisions by simple 
analogies or intuition. 

We mentioned earlier that this problem was purposely designed so that an ana- 
lytical solution could be obtained. Suppose now that the cost per run follows a non- 
linear function such as shown earlier in Figure E1.7. Let the cost vary as given by 
Equation (b), thus allowing for some economy of scale. Then the total cost function 
becomes 

After differentiation and equating the derivative to zero, you get 

Note that Equation (i) is a rather complicated polynomial that cannot explicitly be 
solved for P p t ;  you have to resort to a numerical solution as discussed in Chapter 5. 
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A dichotomy arises in attempting to minimize function (h). You can either (1) 
minimize the cost function (h) directly or (2) find the roots of Equation (i). Which is 
the best procedure? In general it is easier to minimize C directly by a numerical 
method rather than take the derivative of C, equate it to zero, and solve the resulting 
nonlinear equation. This guideline also applies to functions of several variables. 

The second derivative of Equation (h) is 

A numerical procedure to obtain Dopt directly from Equation ( 4  could also have been 
carried out by simply choosing values of D and computing the corresponding values 
of C from Equation ( 4  (K, = 1 .O; K2 = 10,000; K3 = 4.0; Q = 100,000). 

From the listed numerical data you can see that the function has a single minimum in 
the vicinity of D = 20,000 to 40,000. Subsequent calculations in this range (on a finer 
scale) for D will yield a more precise value for P p t .  

Observe that the objective function value for 20 5 D 5 60 does not vary sig- 
nificantly. However, not all functions behave like C in Equation (4-some exhibit 
sharp changes in the objective function near the optimum. 

Step 6. You should always be aware of the sensitivity of the optimal answer, that 
is, how much the optimal value of C changes when a variable such as D changes or a 
coefficient in the objective function changes. Parameter values usually contain errors 
or uncertainties. Information concerning the sensitivity of the optimum to changes or 
variations in a parameter is therefore very important in optimal process design. For 
some problems, a sensitivity analysis can be carried out analytically, but in others the 
sensitivity coefficients must be determined numerically. 

In this example problem, we can analytically calculate the changes in @pt in 
Equation ( 4  with respect to changes in the various cost parameters. Substitute DOpt 
from Equation Cf) into the total cost function 

Next, take the partial derivatives of @pt with respect to K,, Kz, K3, and Q 
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Equations (1 1) through (14) are absolute sensitivity coefficients. 
Similarly, we can develop expressions for the sensitivity of DOpt: 

Suppose we now substitute numerical values for the constants in order to clarify how 
these sensitivity functions might be used. For 

then 

DOpt = 3 1,622 

What can we conclude from the preceding numerical values? It appears that Dopt 
is extremely sensitive to K,, but not to Q. However, you must realize that a one-unit 
change in Q (100,000) is quite different from a one-unit change in K1 (0.5). Therefore, 
in order to put the sensitivities on a more meaningful basis, you should compute the 
relative sensitivities: for example, the relative sensitivity of P p t  to K, is 



26 PART I : Problem Formulation 

Application of the preceding idea for the other variables yields the other relative sen- 
sitivities for C O P t .  Numerical values are 

Changes in the parameters Q and K3 have the largest relative influence on COPt, sig- 
nificantly more than K, or K,. The relative sensitivities for Dopt are 

so that all the parameters except for K, have the same influence (in terms of absolute 
value of fractional changes) on the optimum value of D. 

For a problem for which we cannot obtain an analytical solution, you need to 
determine sensitivities numerically. You compute (1) the cost for the base case, that 
is, for a specified value of a parameter; (2) change each parameter separately (one at 
a time) by some arbitrarily small value, such as plus 1 percent or 10 percent, and then 
calculate the new cost. You might repeat the procedure for minus 1 percent or 10 per- 
cent. The variation of the parameter, of course, can be made arbitrarily small to 
approximate a differential; however, when the change approaches an infinitesimal 
value, the numerical error engendered may confound the calculations. 

1.7 OBSTACLES TO OPTIMIZATION 

If the objective function and constraints in an optimization problem are "nicely 
behaved," optimization presents no great difficulty. In particular, if the objective 
function and constraints are all linear, a powerful method known as linear pro- 
gramming can be used to solve the optimization problem (refer to Chapter 7). For 
this specific type of problem it is known that a unique solution exists if any solu- 
tion exists. However, most optimization problems in their natural formulation are 
not linear. 

To make it possible to work with the relative simplicity of a linear problem, we 
often modify the mathematical description of the physical process so that it fits the 
available method of solution. Many persons employing computer codes for opti- 
mization do not fully appreciate the relation between the original problem and the 
problem being solved; the computer shows its neatly printed output with an author- 
ity that the reader feels unwilling, or unable, to question. 

In this text we will discuss optimization problems based on behavior of physi- 
cal systems that have a complicated objective function or constraints: for these 
problems some optimization procedures may be inappropriate and sometimes mis- 
leading. Often optimization problems exhibit one or more of the following charac- 
teristics, causing a failure in the calculation of the desired optimal solution: 

1. The objective function or the constraint functions may have finite discontinuities 
in the continuous parameter values. For example, the price of a compressor or 



C H A P T E R  1 : The Nature and Organization of Optimization Problems 27 

heat exchanger may not change continuously as a function of variables such as 
size, pressure, temperature, and so on. Consequently, increasing the level of a 
parameter in some ranges has no effect on cost, whereas in other ranges a jump 
in cost occurs. 

2. The objective function or the constraint functions may be nonlinear functions of 
the variables. When considering real process equipment, the existence of truly 
linear behavior and system behavior is somewhat of a rarity. This does not pre- 
clude the use of linear approximations, but the results of such approximations 
must be interpreted with considerable care. 

3. The objective function or the constraint functions may be defined in terms of 
complicated interactions of the variables. A familiar case of interaction is the 
temperature and pressure dependence in the design of pressure vessels. For 
example, if the objective function is given as f = 15.5~,x~l '~,  the interaction 
between x, and x2 precludes the determination of unique values of x, and x,. 
Many other more complicated and subtle interactions are common in engineer- 
ing systems. The interaction prevents calculation of unique values of the vari- 
ables at the optimum. 

4. The objective function or the constraint functions may exhibit nearly "flat" 
behavior for some ranges of variables or exponential behavior for other ranges. 
This means that the value of the objective function or a constraint is not sensi- 
tive or is very sensitive, respectively, to changes in the value of the variables. 

5. The objective function may exhibit many local optima, whereas the global opti- 
mum is sought. A solution to the optimization problem may be obtained that is 
less satisfactory than another solution elsewhere in the region. The better solu- 
tion may be reached only by initiating the search for the optimum from a differ- 
ent starting point. 

In subsequent chapters we will examine these obstacles and discuss some ways 
of mitigating such difficulties in performing optimization, but you should be aware 
these difficulties cannot always be alleviated. 
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PROBLEMS 

For each of the following six problems, formulate the objective function, the equality con- 
straints (if any), and the inequality constraints (if any). Speczfy and list the independent vari- 
ables, the number of degrees of freedom, and the coeflcients in the optimization problem. 
Solve the problem using calculus as needed, and state the complete optimal solution values. 

1.1 A poster is to contain 300 cm2 of printed matter with margins of 6 cm at the top and 
bottom and 4 cm at ea@i - - .re side. Find the overall dimensions that minimize the total area 
of the poster. 

1.2 A box with a square base and open top is to hold 1000 cm3. Find the dimensions that 
requife the least material (assume uniform thickness of material) to construct the box. 

1 3  Find the area of the largest rectangle with its lower base on the x axis and whose cor- 
ners are bounded at the top by the curve y = 10 - 9. 

1.4 Three points x are selected a distance h apart (x,, xo + h, xo + 2h), with corresponding 
valuesfa, ff,, and&. Find the maximum or minimum attained by a quadratic function 
passing through all three points. Hint: Find the coefficients of the quadratic function 

. first. 

1.5 Find the point on the curve f = 2x2 + 3x + 1 nearest the origin. 

1.6 Find the volume of the largest right circular cylinder that can be inscribed inside a 
sphere of;adius R. 

1.7 In a particular process the value i f  the.productflx) is a function of the concentration x 
of ammonia expressed as a mole fracti-9. The following figure shows several values 

X 

FIGURE P1.7 



CHAPTER 1: The Nature and Organization of Optimization Problems 29 ' 

offix). No units or values are designated for either of the axes. Duplicate the figure, 
and insert on the duplicate the constraint(s) involved in the problem by drawing very 
heavy lines or curves on the diagram. 

1.8 A trucking company has borrowed $600,000 for new equipment and is contemplating 
three kinds of trucks. Truck A costs $10,000, truck B $20,000, and truck C $23,000. 
How many trucks of each kind should be ordered to obtain the greatest capacity in ton- 
miles per day based on the following data? 

Truck A requires one driver per day and produces 2100 ton-miles per day. 
Truck B requires two drivers per day and produces 3600 ton-miles per day. 
Truck C requires two drivers per day and produces 3780 ton-miles per day. 
There is a limit of 30 trucks and 145 drivers. 

Formulate a complete mathematical statement of the problem, and label each indi- 
vidual part, identifying the objective function and constraints with the correct units ($, 
days, etc.). Make a list of the variables by names and symbol plus units. Do not solve. 

1.9 In a rough preliminary design for a waste treatment plant the cost of the components 
are as follows (in order of operation) 

1. Primary clarifier: $19.4 x f  
2. Trickling filter: $16.% x;1.66 
3. Activated sludge unit: $9 1.5 X< 0.30 

where the x's are the fraction of the 5-day biochemical oxygen demand (BOD) exiting 
each respective unit in the process, that is, the exit concentrations of material to be 
removed. 

The required removal in each unit should be adjusted so that the final exit con- 
centration x, must be less than 0.05. Formulate (only) the optimization problem listing 
the objective function and constraints. 

FIGURE P1.9 

1.10 Examine the following optimization problem. State the total number of variables, and 
list them. State the number of independent variables, and list a set. 

Minimize: f (x) = 4x1 - x: - 12 

Subject to: 25 - x: - x: = 0 

lox, - x; + lox, - x; - 34 1 0 

(x, - 3), + (x2 - 112 2 0 

x,, xz ' 0 
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1.11 A series of four well-mixed reactors operate isothermally in the steady state. Examine 
the figure. All the tanks do not have the same volume, but the sum of Vi = 20 m3. The 
component whose concentration is designated by C reacts according to the following 
mechanism: r = - k c  in each tank. 

Determine the values of the tank volumes (really residence times of the compo- 
nent) in each of the four tanks for steady-state operation with a fixed fluid flow rate of 
q so as to maximize the yield of @uct C,. Note (V,/qi) = Oi, the residence time. Use 
the following data for the cocffici&ts in the problem 

n = 2.5 k = 0.00625 [m3/(kg mol) ] - '.5(s) - ' 

The units for k are fixed by the constant 0.00625. 
List: 

1. The objective function 
2. The variables 
3, The equality constraints 
4. The inequality constraints 

What are the independent variables? The dependent variables? Do not solve the 
problem, just set it up so .it can be solved. 

1.12 A certain gas contains moisture, which you need to remove by compression and cool- 
ing so that the gas will finally contain not more than 1% moisture (by volume). If the 
cost & the compression equipment is 

Cost in $ = (pressure in psi) '4' 

and the cost of the cooliig equipment is 

Cost in $ = (350 - temperature in 

what is the best temperature to use? 
Define the objective function, the independent and the dependent variables, and 

the constraints first. Then set this problem up, and list all of the steps to solve it. You 
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do not have to solve the final (nonlinear) equations you derive for T. Hint: The vapor 
pressure of water (p*) is related to the temperature T in "C by Antoine's equation: 

1.13 The following problem is formulated as an optimization problem. A batch reactor 
operating over a 1-h period produces two products according to the parallel reaction 
mechanism: A -+ B, A + C. Both reactions are irreversible and first order in A and 
have rate constants given by 

ki = kio exp {Ei/RT} i = 1,2 

where klo = 106/s 

k,, = 5.1011/s 
El = 10,000 cal/gmol . 
E2 = 20,000 cal/gmol 

The objective is to find the temperature-time profile that maximizes the yield of B for 
operating temperatures below 282°F. The optimal control problem is therefore 

Maximize: B(l .O) 

dA 
Subject to: - = - (k,  + k2)A 

dt 

(a) What are the independent variables in the problem? 
(b) What are the dependent variables in the problem? 
(c) What are the equality constraints? 

\ 
(d) What are the inequality constraints? 
(e) What procedure would you recommend to solve the problem? 

1.14 The computation of chemical equilibria can be posed as an optimization problem with 
linear side conditions. For any infinitesimal process in which the amounts of species 
present may be changed by either the transfer of species to or from a phase or by chem- 
ical reaction, the change in the Gibbs free energy is ' 

dG = S d T +  Vdp + c F i d n i  
I 

Here G, S, T, and p are the Gibbs free energy, the entropy, the temperature, and the 
(total) pressure, respectively. The partial molal free energy of species number i is' ki, 
and ni is the number of moles of species number i in the system. If it is assumed,that 
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the temperature and pressure are held constant during the process, dT and dp both van- 
ish. If we now make changes in the ni such that dni = dkni, so that the changes in the 
ni are in the same proportion k, then, since G is an extensive quantity, we must have 
dG = dkG. This implies that 

Comparison of Equations (1) and (2) shows that the chemical potentials are inten- 
sive quantities, that is, they do not depend on the amount of each species, because if 
all the ni are increased in the same proportion at constant T and p, the pi must remain 
unchanged for G to increase in the same rate as the n,. This invariance property of the 
pi is of the utmost importance in restricting the possible forms that the pi may take. 

Equation (2) expresses the Gibbs free energy in terms of the mole numbers ni, 
which appear both explicitly and implicitly (in the pi) on the right-hand side. The 
Gibbs free energy is a minimum when the system is at equilibrium. The basic prob- 
lem, then, becomes that of finding that set of ni that makes G a minimum. 

(a) Formulate in symbols the optimization problem using the previous notation with nT 
being the number of moles of the compounds at equilibrium and M the number of 
elements present in the system. The initial number of moles of each compound is 
presumed to be known. 

(b) Introduce into the preceding formulation the quantities needed to solve the follow- 
ing problem: 

Calculate the fraction of steam that is decomposed in the water-gas shift reaction 

at T = 1530°F and p = 10 atm starting with 1 mol of H20 and 1 mol of CO. Assume 
the mixture is an ideal gas. Do not solve the problem. 

Hints: You can find (from a thermodynamics book) that the chemical potential can 
be written as , 

pi = pf + RTlnp + RTlnxi = pf + RTlnp, 
(3) 

where xi = mole fraction of a compound in the gas phase 

Pi = PXi 

E-L& = (AGOT)i 

-(AGO,) = RT In K,, with K, being the equilibrium constant for the reaction. 

1~15 For a two-stage adiabatic compressor where the gas is cooled to the inlet gas temper- 
ature between stages, the theoretical work is given by 

where k = C j C ,  
p, = inlet pressure 
p2 = intermediate stage pressure 
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p3 = outlet pressure 
V ,  = inlet volume 

We wish to optimize the intermediate pressure p2 so that the work is a minimum. Show 
that if p, = 1 atm and p3 = 4 atm, pipt = 2 atrn. 

1.16 You are the manufacturer of PCZ,, which you'sell in barrels at a rate of P barrels per 
day. The cost per barrel produced is 

C = 50 + 0.1P + 9000/P in dollars /barrel 
---+.- 

For example, for P = 100 barrelslday, C = $150/barrel. The selling price per barrel is 
$300. Determine 

(a) The production level giving the minimum cost per barrel. 
(b) The production level which maximizes the profit per day. 
(c) The production level at zero profit. 
(d) Why are the answers in (a)-and (b) different? 

1.17 It is desired to cool a gas [C, = 0.3 Btu/(lb)("F)] from 195 to 90°F, using cooling water 
at 80°F. Water costs $0.2011000 ft3, and the annual fixed charges for the exchanger are 
$0.50/ft2 of inside surface, with a diameter of 0.0875 ft. The heat transfer coefficient 
is U = 8 Btu/(h)(ft2)("F) for a gas rate of 3O(M lblh. Plot the annual cost of cooling 
water and fixed charges for the exchanger as a function of the outlet water tempera- 
ture. What is the minimum total cost? How would you formulate the problem to obtain 
a more meaningful result? ~ i n i  Which variable is the manipulated variable? 

1.18 The total cost (in dollars per year) for pipeline installation and operation for an incom- 
pressible fluid can be expressed as follows: 

C = C,D L + C2mA p/p 

where C, = the installed cost of the pipe per foot of length computed on an annual 
basis (C,D'.5 is expressed in dollars per year per foot length, C2 is 
based on $O.O5/kWh, 365 dayslyear and 60 percent pump efficiency). 

D = diameter (to be optimized) 
L =' pipeline length = 100 miles 
m = mass flow rate = 200,000 lblh 

Ap = 2 pv2W(Dg,) . f = pressure drop, psi 
p = density = 60 lb/ft3 
v = velocity = (4m)/(p~D2) 
f = friction factor = (0.046~0.2)/(D0.2 v ~ . ~  p0.2) 
p = viscosity = 1 CP 

(a) Find general expressions for DOpt, vOpt, and @pt. 
(b) For C; = 0.3 (D expressed in inches for installed cost), calculate DOpt and vOpt for 

the following pairs of values of p and p (watch your units!) 
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1.19 Calculate the relative sensitivities of D"pt and C"pf in Problem 1.18 to changes in p, p, 
m, and C2 (cost of electricity). Use the base case parameters as given in Problem 1.18, 
with C, = 0.3. 

Pose each of the following problems as an optimization problem. Include all of the features 
, mentioned in connection with the Brst four steps of Table 1.1, but do not solve the problem. 

1.20 A chemical manufacturing firm has discontinued production of a certain unprofitable 
product line. This has created considerable excess production capacity on the three 
existing batch production facilities that operate separately. Management is considering 
devoting this excess capacity to one or more of three new products; call them products 
1, 2, and 3. The available capacity on the existing units which might limit output is 
summarized in the following table: 

Available time 
Unit &/week) 

Each of the three new products requires the following processing time for com- 
pletion: 

Productivity match)  

Unit Product 1 Product 2 Product 3 

The sales department indicates that the sales for products 1 and 2 
exceeds the maximum production rate and that the sales potential for product 3 is 20 
batches per week. The profit per batch would be $20, $6, and $8, respectively, on prod- 
ucts 1, 2, and 3. 

How much of each product should be produced to maximize profits of the com- 
pany? Formulate the objective function and constraints, but do not solve. 

1.21 You are asked to design an efficient treatment system for runoff from rainfall in an eth- 
ylene plant. The accompanying figure gives the general scheme to be used. 

The rainfall frequency data for each recurrence interval fits an empirical equation 
in the form of 

where R = cumulative inches of rain during time t 
t = time, h 

a and b = constants that have to be determined by fitting the observed rainfall data 

Four assumptions should be made: 

1. The basin is empty at the beginning of the maximum intensity rain. 
2. As soon as water starts to accumulate in the basin, the treatment system is started 

and water is pumped out of the basin. 
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Rainfall 

Outfall 

FIGURE P1.21 

Treatment 
system 

3. Stormwater is assumed to enter the basin as soon as it falls. (This is normally a 
good assumption since the rate at which water enters the basin is small relative to 
the rate at which it leaves the basin during a maximum intensity rain.) 

4. All the rainfall becomes runoff. 

P 

v 

p 
> 

The basin must not overflow so that any amount of water that would cause the 
basin to overflow must be pumped out and treated. What is the minimum pumping rate 
P required? 

Impoundment 
basin volume, 

v 

Area of 
runoff to 

be treated, 
A - 

Other notation: Q = Volumetric flow rate of water entering basin 
P = Volumetric treatment rate in processing plant 

Q 

1.22 Optimization of a distributed parameter system can be posed in various ways. An 
example is a packed, tubular reactor with radial diffusion. Assume a single reversible 
reaction takes place. To set up the problem as a nonlinear programming problem, write 
the appropriate balances (constraints) including initial and boundary conditions using 
the following notation: 

x = Extent of reaction t = Time 
T = Dimensions temperature r = Dimensionless radial coordinate 

Do the differential equations have to be expressed in the form of analytical solutions? 
The objective function is to maximize the total conversion in the effluent from the 

reactor over the cross-sectional area at any instant of time. Keep in mind that the heat 
flux through the wall is subject to physical bounds. 

1.23 Calculate a new expression for Dopt i f f  = 0.005 (rough pipe), independent of the 
Reynolds number. Compare your results with these from Problem 1.18 for p = 1 cP 
and p = 60 1b/ft3. 

1.24 A shell-and-tube heat exchanger has a total cost of C = $7000 + $250 D2.5L + 
$200 DL, where D is the diameter (ft) and L is the length'(ft). What is the absolute and 
the relative sensitivity of the total cost with respect to the diameter? 

If an inequality constraint exists for the heat exchanger 

how must the sensitivity calculation be modified? 
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1.25 Empirical cost correlations for equipment are often of the following form: 

where C is the base cost per unit and S is the size per unit. Obtain an analytical expres- 
sion for the minimum cost in terms of S, and, if possible, find the expression that gives 
the value of S at the minimum cost. Also write down an analytical expression for the 
relative sensitivity of C with respect to S. 

1.26 What are three major difficulties experienced in formulating optimization problems? 
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CONSTRAINTS IN OPTIMIZATION arise because a process must describe the physi- 
cal bounds on the variables, empirical relations, and physical laws that apply to a 
specific problem, as mentioned in Section 1.4. How to develop models that take 
into account these constraints is the main focus of this chapter. Mathematical mod- 
els are employed in all areas of science, engineering, and business to solve prob- 
lems, design equipment, interpret data, and communicate information. Eykhoff 
(1974) defined a mathematical model as "a representation of the essential aspects 
of an existing system (or a system to be constructed) which presents knowledge of 
that system in a usable form." For the purpose of optimization, we shall be con- 
cerned with developing quantitative expressions that will enable us to use mathe- 
matics and computer calculations to extract useful information. To optimize a 
process models may need to be developed for the objective function5 equality con- 
straints g, and inequality constraints h. 

Because a model is an abstraction, modeling allows us to avoid repetitive 
experimentation and measurements. Bear in mind, however, that a model only imi- 
tates reality and cannot incorporate all features of the real process being modeled. 
In the development of a model, you must decide what factors are relevant and how 
complex the model should be. For example, consider the following questions. 

1. Should the process be modeled on a fundamental or empirical level, and what 
level of effort (time, expenses, manpower) is required for either approach? 

2. Can the process be described adequately using physical principles? 
3. What is the desired accuracy of the model, and how does its accuracy influence 

its ultimate use? 
4. What measurements are available, and what data are available for model verifi- 

cation? 
5. Is the process actually composed of smaller, simpler subsystems that can be more 

easily analyzed? 

The answers to these questions depend on how the model is used. As thi model of 
the prqess becomes more complex, optimization usually becomes more difficult. 

In this chapter we will discuss several factors that need to be considered when 
constructing a process model. In addition, we will examine the use of optimization 
in estimating the values of unknown coefficients in models to yield a compact and 
reasonable representation of process data. Additional information can be found in 
textbooks specializing in mathematical modeling. To illustrate the need to develop 
models for optimization, consider the following example. 

EXAMPLE 2.1 MODELING AND OPTIMIZING BLAST 
FURNACE OPERATION 

Optimizing the operation of the blast furnace is important in every large-scale steel mill. 
A relatively large number of important variables (several of which cannot be measured) 
interact in this process in a highly complex manner, numerous constraints must be taken 
into account, and the age and efficiency of the plant significantly affect the optimum 
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operating point (Deitz, 1997). Consequently, a detailed examination of this problem 
demonstrates the considerations involved in mathematical modeling of a typical process. 

The operation of a blast furnace is semicontinuous. The raw materials are iron 
ore containing roughly 20 to 60 percent iron as oxides and a variety of other metallic 
and nonmetallic oxides. These materials are combined with coke, which reacts to 
form blast furnace gas. Limestone is a flux that helps separate the impurities from the 
hot metal by influencing the pH. Apart from the blast furnace gas, which may serve 
as a heating medium in other processes, the output of the furnace consists of molten 
iron, which includes some impurities (notably carbon and phosphorus) that must be 
removed in the steelmaking process, and slag, which contains most of the impurities 
and is of little value. Operation of the blast furnace calls for determination of the 
amount of each ore, a production rate, and a mode of operation that will maximize the 
difference between the product value and the cost of producing the required quantity 
and quality of molten iron. Figure E2.1 shows the flow of materials in the blast fur- 
nace, which itself is part of a much larger mill. One ton of hot metal requires about 
1.7 tons of iron-bearing materials, 0.5 to 0.65 tons of coke and other fuel, 0.25 tons 
of fluxes, and 1.8 to 2.0 tons of air. In addition, for each ton of hot metal produced, 
the process creates 0.2 to 0.4 tons of sldg, 0.05 tons or less of flue dust, and 2.5 to 3.5 
tons of blast furnace gases. The final product, hot metal, is about 93% iron, with other 
trace ingredients, including sulfur, silicon, phosphorus, and manganese. The process 
variables and conceptual models are identified in Figure E2.1 under the 'column 
"Process Analysis," which has categories for the objective function, equality con- 
straints, and inequality constraints. 

Objective function 

To formulate the objective function, two categories of costs have to be considered: 

1. Costs associated with the material flows (the input and output variables), such as 
the costs of purchased materials. 

2. Costs associated with the operations related to the process variables in the model. 

The terms that make up the objective function (to be maximized) are shown in Figure 
E.2.1. The profit of the blast furnace can be expressed as 

Equality and inequality constraints 

The next step in formulating the problem is to construct a mathematical model of the 
process by considering the fundamental chemical and physical phenomena and phys- 
ical limitations that influence the process behavior. For the case of the blast furnace, 
typical features are 

1. Iron ore: Ores of different grades are available in restricted quantities. Different 
ores have varying percentages of iron and different types and amounts of impu- 
rities. The proportion of each ore that occurs in the final hot metal is assumed 
to be fixed by its composition. For example, the amount of fine ore must be lim- 
ited because too much can disrupt the flow of gas through the furnace and limit 
production. 

2. Coke: The amount of coke that may be burned in any furnace is effectively limited 
by the furnace design, and the hot metal temperature is controlled by the amount 



40 PART I : Problem Formulation 

FIGURE E.2.1 
Objective function components and types of constraints for a blast furnace. 

of coke (or carbon). The coke consumption rate can be based on empirical rela- 
tionships developed through regression of furnace data. 

3. Slag: For technical reasons, the level of impurities in the slag must be controlled. 
There is an upper limit on the percentage of magnesium, upper and lower limits on 
the percentage of silicon and aluminum, and close limits on the "basicity" ratio 
(CaO + MgO)/(SiO, + Al,O,). The basicity ratio controls the viscosity and melt- 
ing point of the slag, which in turn affect the hearth temperature and grade of iron 
produced. 

Process Analysis 

Objective Function Components 

Associated Costs and Revenues: 

Orel:xl material cost cl 
Ore 2: x2 material cost c2 
Ore 3: x3 material cost c3 

Cast iron scrap: xq material cost cq 
Coke A: x5 material cost cg 
Coke B: x6 material cg 
Pig iron: x7 sales price c7 
Blast furnace gas: xg assigned value: cg 

Constraints 

Equalities 

Material and Energy Balances: 

Metal (iron) balance 
Slag balance 
Carbon balance 
Gas balance 
Elemental balances (0, H, S, Si, Al, 
Ca, Mg, P, Ti, K, Cu, Mo, Mn, etc.) 
Energy balance 

Inequalites 

Process Limits: 

Coke throughput 
Hot metal production rate 
Slag volume 
Ore availability 
Elements in slag 
Elements in metal 
Basicity 
Sales limits 

Process 

Coke B - Limestone 

Coke A \ 

1 
Blast 
furnace 
gas 

V 

Slag < pig 
iron 

Ore 1 - 
Ore2 + 

Ore3 + 

Cast iron 
scrap B 

> 

Air 
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The basicity ratio can be expressed in terms of the blast furnace feeds xi as follows: 

where w , ~  = weight fraction of CaO in feed i 
w , ~  = weight fraction of MgO in feed i 
w,~ = weight fraction of SiO, in feed i 
wSi = weight fraction of Al,O, in feed i 

4. Phosphorus: All phosphorus in the raw material finds its way into the molten 
metal. There is an upper limit on the phosphorus permitted, although precise quan- 
tities are sometimes prescribed. In general, it is cheaper to produce higher phos- 
phorus iron, but more expensive to refine it. 

From these and other considerations you can prepare: 

1. A set of input and output variables. 
2. A set of steady-state input-output material and energy balances (equality constraints). 
3. A set of explicit empirical relations (equality constraints). 
4. A set of restrictions (inequality constraints) on the input and output variables as 

indicated in Figure E.2.1. 

2.1 CLASSIFICATION OF MODELS 

Two general categories of models exist: 

1. Those based on physical theory. 
2. Those based on strictly empirical descriptions (so-called black box models). 

Mathematical models based on physical and chemical laws (e.g., mass and energy 
balances, thermodynamics, chemical reaction kinetics) are frequently employed in 
optimization applications (refer to the examples in Chapters 11 through 16). These 
models are conceptually attractive because a general model for any system size can 
be developed even before the system is constructed. A detailed exposition of fun- 
damental mathematical models in chemical engineering is beyond our scope here, 
although we present numerous examples of physiochemical models throughout the 
book, especially in Chapters 11 to 16. Empirical models, on the other hand, are 
attractive when a physical model cannot be developed due to limited time or 
resources. Input-output data are necessary in order to fit unknown coefficients in 
either type of the model. 
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Percent 
collection 
efficiency 
"l 

- 
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- 

o experimental data - - - - - nonlinear model 
- linear model 

- 

Specific collection area A 

FIGURE E2.2 
ESP collection efficiency versus specific collection area for a linear 
model 7 = 0.129A + 85.7 and a nonlinear model 7 = 100{ 1 - 
[e-0.0264A/(4.082 - 3.15 X lop6 A)] ) . 

EXAMPLE 2.2 MODELS OF AN ELECTROSTATIC 
PRECIPITATOR 

A coal combustion pilot plant is used to obtain efficiency data on the collection of par- 
ticulate matter by an electrostatics precipitator (ESP). The ESP performance is varied 
by changing the surface area of the collecting plates. Figure E2.2 shows the data col- 
lected to estimate the coefficients in a model to represent efficiency 7 as a function of 
the specific collection area A, measured as plate arealvolumetric flow rate. 

Two models of different complexity have been proposed to fit the performance data: 

Model 1: 7 = b,A + b, 

Model 2: 7 = 100 I 
Model 1 is linear in the coefficients, and model 2 is nonlinear in the coefficients. The 
mathematical structure of model 2 has a fundamental basis that takes into account the 
physical characteristics of the particulate matter, including particle size and electrical 
properties, but we do not have the space to derive the equation here. 

Which model is better? 
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Solution. The coefficients in the two models were fitted using MATLAB, yielding 
the following results: 

Modell: b, = 0.129 b, = 85.7 

Model 2: y, = 0.0264 y, = 4.082 y, = -0.00000315 

As can be seen in Figure E2.2, model 2 provides a better fit than model 1 over the 
range of areas A considered, but model 2 may present some difficulties when used as 
a constraint inserted into an optimization code. 

The electrostatic precipitator in Example 2.2 is typical of industrial processes; 
the operation of most process equipment is so complicated that application of fun- 
damental physical laws may not produce a suitable model. For example, thermo- 
dynamic or chemical kinetics data may be required in such a model but may not be 
available. On the other hand, although the development of black box models may 
require less effort and the resulting models may be simpler in form, empirical mod- 
els are usually only relevant for restricted ranges of operation and scale-up. Thus, 
a model such as ESP model 1 might need to be completely reformulated for a dif- 
ferent size range of particulate matter or for a different type of coal. You might have 
to use a series of black box models to achieve suitable accuracy for different oper- 
ating conditions. 

In addition to classifying models as theoretically based versus empirical, we 
can generally group models according to the following types: 

Linear versus nonlinear. 
Steady state versus unsteady state. 
Lumped parameter versus distributed parameter. 
Continuous versus discrete variables. 

Linear Kersus nonlinear 
Linear models exhibit the important property of superposition; nonlinear ones 

do not. Equations (and hence models) are linear if the dependent variables or their 
derivatives appear only to the first power: otherwise they are nonlinear. In practice 
the ability to use linear models is of great significance because they are an order of 
magnitude easier to manipulate and solve than nonlinear ones. 

To test for the linearity of a model, examine the equation(s) that represents the 
process. If any one term is nonlinear, the model itself is nonlinear. By implication, 
the process is nonlinear. 

Examine models 1 and 2 for the electrostatic precipitator. Is model 1 linear in 
A? Model 2? The superposition test in each case is: Does 

(2. la)  

and 
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where J = any operator contained in the model such as square, differentiation, 
and so on. 

k = a constant 
x, and x2 = variables 

ESP model 1 is linear in A 

but ESP model 2 is nonlinear because 

Steady state versus unsteady state 
Other synonyms for steady state are time-invariant, static, or stationary. These 

terms refer to a process in which the values of the dependent variables remain con- 
stant with respect to time. Unsteady state processes are also called nonsteady state, 
transient, or dynamic and represent the situation when the process-dependent vari- 
ables change with time. A typical example of an unsteady state process is the oper- 
ation of a batch distillation column, which would exhibit a time-varying product 
composition. A transient model reduces to a steady state model when d / d t  = 0. 
Most optimization problems treated in this book are based on steady state models. 
Optimization problems involving dynamic models usually pertain to "optimal con- 
trol" or real-time optimization problems (see Chapter 16) 

Distributed versus lumped parameters 
Briefly, a lumped parameter representation means that spatial variations are 

ignored and that the various properties and the state of the system can be consid- 
ered homogeneous throughout the entire volume. A distributed parameter repre- 
sentation, on the other hand, takes into account detailed variations in behavior from 
point to point throughout the system. In Figure 2.1, compare these definitions for a 
well-stirred reactor and a tubular reactor with axial flow. In the first case, we 
assume that mixing is complete so no concentration or temperature gradient occurs 
in the reactor, hence a lumped parameter mathematical model would be appropri- 
ate. In contrast, the tubular reactor has concentration or temperature variations 
along the axial direction and perhaps in the radial direction, hence a distributed 
parameter model would be required. All real systems are, of course, distributed 
because some variations of states occur throughout them. Because the spatial vari- 
ations often are relatively small, they may be ignored, leading to a lumped approx- 
imation. If both spatial and transient characteristics are to be included in a model, 
a partial differential equation or a series of stages is required to describe the process 
behavior. 

It is not easy to determine whether lumping in a process model is a valid tech- 
nique for representing the process. A good rule of thumb is that if the response is 
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essentially the same at all points in the process, then the model can be lumped as a 
single unit. If the response shows significant instantaneous differences in any direc- 
tion along the vessel, then the problem should be treated using an appropriate dif- 
ferential equation or series of compartments. In an optimization problem it is desir- 
able to simplify a distributed model by using an equivalent lumped parameter 
system, although you must be careful to avoid masking the salient features of the 
distributed element (hence building an inadequate model). In this text, we will 
mainly consider optimization techniques applied to lumped systems. 

Continuous versus discrete variables 
Continuous variables can assume any value within an interval; discrete vari- 

ables can take only distinct values. An example of a discrete variable is one that 
assumes integer values only. Often in chemical engineering discrete variables and 
continuous variables occur simultaneously in a problem. If you wish to optimize a 
compressor system, for example, you must select the number of compressor stages 
(an integer) in addition to the suction and production pressure of each stage (posi- 
tive continuous variables). Optimization problems without discrete variables are far 
easier to solve than those with even one discrete variable. Refer to Chapter 9 for 
more information about the effect of discrete variables in optimization. 

Outlet 

-- 

Observed flow 

Stirred tank 

HOW i; 0 0 )  HOW o;t 

Entering reactants dispersion 

distributed uniformly 
across the cross section 

FIGURE 2.1 
Flow patterns in a stirred tank (lumped parameter system) and a tubular 
reactor (distributed parameter system). 
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An engineer typically strives to treat discrete variables as continuous even at 
the cost of achieving a suboptimal solution when the continuous variable is rounded 
off. Consider the variation of the cost of insulation of various thickness as shown 
in Figure E 1.1. Although insulation is only available in 0.5-in. increments, contin- 
uous approximation for the thickness can be used to facilitate the solution to this 
optimization-problem. 

2.2 HOW TO BUILD A MODEL 

For convenience of presentation, model building can be divided into four phases: 
(1) problem definition and formulation, ( 2 )  preliminary and detailed analysis, 
(3) evaluafion, and (4) interpretation application. Keep in mind that model building 
is an iterative procedure. Figure 2.2 summarizes the activities to be carried out, 

\L 

I Select key variables, 1 

Experience, 
reality 

Phase 
- - - t - -  

Formulate model objectives, 
evaluation criteria, costs 

of development 
< 

physical princiiles to be applied, 
test plan to be used 

JI 

Computer simulation, Develop < Observations, 
software development model data 

I 

Management 
objectives 

Problem 

Design 
Phase 

I 

Apply model r i  

Definition 

4 
Evaluate and 

FIGURE 2.2 
Major activities in model building prior to application. 

Evaluation 
verify model ' Phase 
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which are discussed in detail later on. The content of this section is quite limited in 
scope; before actually embarking on a comprehensive model development pro- 
gram, consult textbooks on modeling (see References). 

Problem definition and formulation phase 
In this phase the problem is defined and the important elements that pertain to 

the problem and its solution are identified. The degree of accuracy needed in the 
model and the model's potential uses must be determined. To evaluate the structure 
and complexity of the model, ascertain 

1. The number of independent variables to be included in the model. 
2. The number of independent equations required to describe the system (some- 

times called the "order" of the model). 
3. The number of unknown parameters in the model. 

In the previous section we addressed some of these issues in the context of 
physical versus empirical models. These issues are also intertwined with the ques- 
tion of model verification: what kinds of data are available for determining that the 
model is a valid description of the process? Model building is an iterative process, 
as shown by the recycling of information in Figure 2.2. 

Before carrying out the actual modeling, it is important to evaluate the eco- 
nomic justification for (and benefits of) the modeling effort and the capability of 
support staff for carrying out such a project. Primarily, determine that a success- 
fully developed model will indeed help solve the optimization problem. 

Design phase 
The design phase includes specification of the information content, general 

description of the programming logic and algorithms necessary to develop and 
employ a useful model, formulation of the mathematical description of such a 
model, and simulation of the model. First, define the input and output variables, and 
determine what the "system" and the "environment" are. Also, select the specific 
mathematical representation(s) to be used in the model, as well as the assumptions 
and limitations of the model resulting from its translation into computer code. Com- 
puter implementation of the model requires that you verify the availability and ade- 
quacy of computer hardware and software, specify computer input-output media, 
develop program logic and flowsheets, and define program modules and their struc- 
tural relationships. Use of existing subroutines and databases saves you time but can 
complicate an optimization problem for the reasons explained in Chapter 15. 

Evaluation phase 
This phase is intended as a final check of the model as a whole. Testing of indi- 

vidual model elements should be conducted during earlier phases. Evaluation of the 
model is carried out according to the evaluation criteria and test plan established in 
the problem definition phase. Next, carry out sensitivity testing of the model inputs 
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and parameters, and determine if the apparent relationships are physically mean- 
ingful. Use actual data in the model when possible. This step is also referred to as 
diagnostic checking and may entail statistical analysis of the fitted parameters (Box 
et al., 1978). 

Model validation requires confirming logic, assumptions, and behavior. These 
tasks involve comparison with historical input-output data, or data in the literature, 
comparison with pilot plant performance, and simulation. In general, data used in 
formulating a model should not be used to validate it if at all possible. Because 
model evaluation involves multiple criteria, it is helpful to find an expert opinion in 
the verification of models, that is, what do people think who know about the 
process being modeled? 

No single validation procedure is appropriate for all models. Nevertheless, it 
is appropriate to ask the question: What do you want the model to do? In the best 
of all possible worlds, you want the model to predict the desired process perform- 
ance with suitable accuracy, but this is often an elusive goal. 

2.3 SELECTING FUNCTIONS TO FIT EMPIRICAL DATA 

A model relates the output (the dependent variable or variables) to the independent 
variable(s). Each equation in the model usually includes one or more coefficients 
that are presumed constant. The term parameter as used here means coefficient and 
possibly input or initial condition. With the help of experimental data, we can deter- 
mine the form of the model and subsequently (or simultaneously) estimate the value 
of some or all of the parameters in the model. 

2.3.1 How to Determine the Form of a Model 

Models can be written in a variety of mathematical forms. Figure 2.3 shows a few 
of the possibilities, some of which were already illustrated in Section 2.1. This sec- 
tion focuses on the simplest case, namely models composed of algebraic equations, 
which constitute the bulk of the equality constraints in process optimizati*. 
Emphasis here is on estimating the coefficients in simple models and not on the 
complexity of the model. 

Selection of the form of an empirical model requires judgment as well as some 
skill in recognizing how response patterns match possible algebraic functions. 
Optimization methods can help in the selection of the model structure as well as in 
the estimation of the unknown coefficients. If you can specify a quantitative crite- 
rion that defines what "best" represents the data, then the model can be improved 
by adjusting its form to improve the value of the criterion. The best model presum- 
ably exhibits the least error between actual data and the predicted response in some 
sense. 
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Algebraic Integral Differential Difference 
equations equations equations equations 
(steady state, (continuous) (continuous) (discontinuous) 
lumped parameter) 

Partial 
differential 

Ordinary 
differential 

equations equations I 

Steady state Unsteady Steady Unsteady 
(distributed state state (one state 
parameter) (distributed distributed (lumped 

parameter) parameter) parameter) 

Steady state Unsteady state 
(multidimensional (one-dimensional) 
connection of 
lumped-parameter 
systems, e.g., 
stages) 

FIGURE 2.3 
Qpical mathematical forms of models. 

Typical relations for empirical models might be 

y = a. + alxl + a2x2 +. . .  linear in the variables and coefficients 

y = a. + al,x: + a,+lx, +. - .  linear in the coefficients, nonlinear in 
the variables (xl, x2) 

1 
G(s) = nonlinear in all the coefficients 

a, + als + a2s2 

- @Nu = a ( ~ e ) ~  nonlinear in the coefficient b 
(Nu: Nusselt number; Re: Reynolds 
number) 

When the model is linear in the coefficients, they can be estimated by a pro- 
cedure called linear regression. If the model is nonlinear in the coefficients, esti- 
mating them is referred to as nonlinear regression. In either case, the simplest ade- 
quate model (with the fewest number of coefficients) should be used. 

Graphical presentation of data assists in determining the form of the function 
of a single variable (or two variables). The response y versus the independent vari- 
able x can be plotted and the resulting form of the model evaluated visually. Figure 
2.4 shows experimental heat transfer data plotted on log-log coordinates. The plot 



FIGURE 2.4 
Average Nusselt number (Nu) versus Reynolds number (Re) for a circular cylinder in air, placed normal to the flow (McAdarns, 1954, 
with permission from McGraw-Hill Companies). 
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FIGURE 2.5 
Predicted Nusselt numbers for turbulent flow with constant wall heat flux (adapted with 
permission from John Wiley and Sons from Bird et al., 1964). Abbreviations: Nu = Nusselt 
number; Re = Reynolds number; Pr = Prandtl number. 

appears to be approximately linear over wide ranges of the Reynolds number (Re). 
A straight line in Figure 2.4 would correspond to log Nu = log a + b log Re or Nu 
= u ( R ~ ) ~ .  Observe the scatter of experimental data in Figure 2.4, especially for 
large values of the Re. 

If two independent variables are involved in the model, plots such as those 
shown in Figure 2.5 can be of assistance; in this case the second independent vari- 
able becomes a parameter that is held constant at various levels. Figure 2.6 shows 
a variety of nonlinear functions and their associated plots. These plots can assist in 
selecting relations for nonlinear functions of y versus x. Empirical functions of 
more than two variables must be built up (or pruned) step by step to avoid includ- 
ing an excessive number of irrelevant variables or missing an important one. Refer 
to Section 2.4 for suitable procedures. 

Now let us review an example for selecting the form of a model to fit experi- 
mental data. 
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2 1 I I 1 I 

Equation (2) 

FIGURE 2.6 
Functions of a single variable x and their corresponding trajectories. (Continues) 

12 I I I 1 I 

Equation (3) 

X 
(3) - = a + px 

Y 
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X 

FiIGURE 2.6 (continued) 

EXAMPLE 2.3 ANALYSIS OF THE HEAT TRANSFER 
COEFFICIENT 

Suppose the overall heat transfer coefficient of a shell-and-tube heat exchanger is cal- 
culated daily as a function of the flow rates in both the shell and tube sides (w, and 
w,, respectively). U has the units of ~tu/(h)("F)(ft~), and w, and w, are in lbh. Figures 
E2.3a and E2.3b illustrate the measured data. Determine the form of a semiempirical 
model of U versus w, and w, based on physical analysis, 

Solution. You could elect to simply fit U as a polynomial function of ws and w,; there 
appears to be very little effect of ws on U, but U appears to vary linearly with w, (except 
at the upper range of w, where it begins to level off). A more quantitative approach 



54 PART I : Problem Formulation 

can be based on a physical analysis of the exchanger. First determine why w, has no 
effect on U. This result can be explained by the formula for the overall heat transfer 
coefficient 

where h, = the shell heat transfer coefficient 
h, = the tube side heat transfer coefficient 
hf = the fouling coefficient 

If h, is small and h, is large, U is dominated by h,, hence changes in w, have little 
effect, as shown in Figure E2.3a. 

Next examine the data for U versus w, in the context of Figure 2.6. For a reason- 
able range of w, the pattern is similar to curve D in Equation (3) where 

which can also be written as 

Note the similarity between Equations (c) and (a), where x = h, and y = U. From a stan- 
dard heat transfer coefficient correlation (Gebhart, 1971), you can find that h, also varies 
according to Ktwp8, where Kt is a coefficient that depends on the fluid physical proper- 
ties and the exchanger geometry. If we lump llh, and l/hf together into one constant 
l/hsf, the semiempirical model becomes 

FIGURE E2.3a 
Variation of overall heat transfer 
coefficient with shell-side flow rate 
w, = 8000. 

FIGURE E2.3b 
Variation of overall heat transfer 
coefficient with tube-side flow rate 
w, for w, = 4000. 
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The line in Figure E2.3b shows how well Equation ( 4  fits the data. 

In the previous examples and figures we indicated that functions for two inde- 
pendent variables can be selected. When three (or more) independent variables 
occur, advanced analysis tools, such as experimental design (see Section 2.4) or 
principal component analysis (Jackson, 1991), are required to determine the struc- 
ture of the model. 

Once the form of the model is selected, even when it involves more than two 
independent variables, fitting the unknown coefficients in the model using linear or 
nonlinear regression is reasonably straightforward. We discuss methods of fitting 
coefficients in the next section. 

2.3.2 Fitting Models by Least Squares 

This section describes the basic idea of least squares estimation, which is used to 
calculate the values of the coefficients in a model from experimental data. In esti- 
mating the values of coefficients for either an empirical or theoretically based 
model, keep in mind that the number of data sets must be equal to or greater than 
the number of coefficients in the model. For example, with three data points of y 
versus x, you can estimate at most the values of three coefficients. Examine Figure 
2.7. A straight line might represent the three points adequately, but the data can be 
fitted exactly using a quadratic model 

By introducing the values of a data point (Y,, x,) into Equation 2.2, you obtain one 
equation of Yl as a function of three unknown coefficients. The set of three data 
points therefore yields three linear equations in three unknowns (the coefficients) 
that can be solved easily. 

To compensate for the errors involved in experimental data, the number of data 
sets should be greater than the number of coefficients p in the model. Least squares 
is just the application of optimization to obtain the "best" solution of the equations, 
meaning that the sum of the squares of the errors between the predicted and the 
experimental values of the dependent variable y for each data point x is minimized. 
Consider a general algebraic model that is linear in the coefficients. 
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FIGURE 2.7 
Linear versus quadratic fit for three data points. 

There are p independent variables xj, j = 1, . . . , p. Independent here means con- 
trollable or adjustable, not functionally independent. Equation (2.3) is linear with 
respect to the Pj, but xj can be nonlinear. Keep in mind, however, that the values of 
xj (based on the input data) are just numbers that are substituted prior to solving for 
the estimates Dj, hence nonlinear functions of xj in the model are of no concern. For 
example, if the model is a quadratic function, 

we specify 

XI = 1 

and the general structure of Equation (2.3) is satisfied. In reading Section 2.4 you 
will learn that special care must be taken in collecting values of x to avoid a high 
degree of correlation between the xi's. 

Introduction of Equation (2.3) into a sum-of-squares error objective function 
gives 
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The independent variables are now identified by a double subscript, the first index 
designating the data set (experiment) number (i = 1, . . . , n) and the second the 
independent variables (j = 1, p). 

Minimizing f with respect to the p's involves differentiating f with respect to 
PI, Pz, . . . , P, and equating the p partial derivatives to zero. This yields p equations 
that relate the p unknown values of the estimated coefficients B1, . . . , Sp: 

where Si = the estimated value of pi 
x,'s = the experimental values of xj 
Yi = the measured dependent variables 

Note the symmetry of the summation terms in x, and that numbering of xu's in the 
summations corresponds to matrix indices (rows, columns). This set of p equations 
in p unknowns can be solved on a computer using one of the many readily avail- 
able routines for solving simultaneous linear equations. 

Equations (2.5) can be expressed in more compact form if matrix notation is 
employed (see Appendix A). Let the model be expressed in vector matrix notation as 

where E = the random error in the data 
Y = the vector of measured dependent variables 
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The objective function to be minimized is 

Equations 2.5 can then be expressed as 

which has the formal solution via matrix algebra 

Statistical packages and spreadsheets solve the simultaneous equations in (2.8) 
to estimate 6 rather than computing the matrix inverse in Equation (2.9). 

The next two examples illustrate the application of Equation 2.9 to fit coeffi- 
cients in an objective function. The same procedure is used to fit coefficients in 
constraint models. 

EXAMPLE 2.4 APPLICATION OF LEAST SQUARES TO 
DEVELOP A COST MODEL FOR THE COST OF HEAT 
EXCHANGERS 

In the introduction we mentioned that it is sometimes necessary to develop a model for 
the objective function using cost data. Curve fitting of the costs of fabrication of heat 
exchangers can be used to predict the cost of a new exchanger of the same class with 
different design variables. Let the cost be expressed as a linear equation 

where p , ,  p2, and p3 are constants 
N = number of tubes 
A = shell surface area 

Estimate the values of the constants p , ,  P2, and p ,  from the data in Table E2.4. The 
regressors are x, = 1, x, = N, and x3 = A. 

Solution. The mavices to be used in calculating fi are as follows (each data set is 
weighted equally): 
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TABLE E2.4 
Labor cost data for mild-steel 

floating-head exchangers 
(0-500 psig) working pressure 

Labor cost Area Number of 
($) (A) tubes (N) 

Source: Shahbenderian, 1961. 

Equation (2.9) gives the best estimates of PI, P2, and P3: 

b1 = 38.177 

b3 = 0.209 

Check to see if these coefficients yield a reasonable fit to the data in Table E2.4. 

EXAMPLE 2.5 APPLICATION OF LEAST SQUARES IN YIELD 
CORRELATION 

Ten data points were taken in an experiment in which the independent variable x is the 
mole percentage of a reactant and the dependent variable y is the yield (in percent): 
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Fit a quadratic model with these data and determine the value of x that maximizes the 
yield. 

Solution. The quadratic model is y = P, + p g  + P3x2. The estimated coefficients 
computed using Excel are 

P2 = 2.63 

p3 = -0.032 

The predicted optimum can be formed by differentiating 

i. = a, + b2. + b l x 2  
with respect to x and setting the derivative to zero to get 

A 

The predicted yield Y at the optimum is 88.8. 

Certain assumptions underly least squares computations such as the indepen- 
dence of the unobservable errors ci, a constant error variance, and lack of error in the 
x's (Draper and Smith, 1998). If the model represents the data adequately, the resid- 
uals should possess characteristics that agree with these basic assumptions. The 
analysis of residuals is thus a way of checking that one or more of the assumptions 
underlying least squares optimization is not violated. For example, if the model fits 
well, the residuals should be randomly distributed about the value of y predicted by 
the model. Systematic departures from randomness indicate that the model is unsat- 
isfactory; examination of the patterns formed by the residuals can provide clues about 
how the model can be improved (Box and Hill, 1967; Draper and Hunter, 1967). 

Examinations of plots of the residuals versus pi or xi, or a plot of the frequency 
of the residuals versus the magnitude of the residuals, have been suggested as 
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numerical or graphical aids to assist in the analysis of residuals. A study of the signs 
of the residuals (+ or -) and sums of signs can be used. Residual analysis should 
include 

1. Detection of an outlier (an extreme observation). 
2. Detection of a trend in the residuals. 
3. Detection of an abrupt shift in the level of the experiment (sequential observations). 
4. Detection of changes in the error variance (usually assumed to be constant). 
5. Examination to ascertain if the residuals are represented by a normal distribu- 

tion (so that statistical tests can be applied). 

When using residuals to determine the adequacy of a model, keep in mind that 
as more independent variables are added to the model, the residuals may become 
less informative. Each residual is, in effect, a weighted average of the eiys; as more 
unnecessary xi's are added to a model, the residuals become more like one another, 
reflecting an indiscriminate average of all the E'S instead of primarily representing 
one ci. In carrying out the analysis of residuals, you will quickly discover that a 
graphical presentation of the residuals materially assists in the diagnosis because 
one aberration, such as a single extreme value, can simultaneously affect several of 
the numerical tests. 

Nonlinear least squares 
If a model is nonlinear with respect to the model parameters, then nonlinear 

least squares rather than linear least squares has to be used to estimate the model 
coefficients. For example, suppose that experimental data is to be fit by a reaction 
rate expression of the form rA = kc,". Here r, is the reaction rate of component A, 
CA is the reactant concentration, and k and n are model parameters. This model is 
linear with respect to rate constant k but is nonlinear with respect to reaction order 
n. A general nonlinear model can be written as 

where y = the model output 
xj's = model inputs 
Pj's = the parameters to be estimated 

We still can define a sum-of-squares error criterion (to be minimized) by selecting 
the parameter set Pj so as to 

min 2 (Yi - 
Pj i = 1  

where Yi = the ith output measurement 
k. = model prediction corresponding to the ith data point 
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The estimated coefficients listed for model 2 in Example 2.2 were obtained using 
nonlinear least squares (Bates and Watts, 1988). 

As another example, consider the problem of estimating the gain K and time 
constants ri  for first-order and second-order dynamic models based on a measured 
unit step response of the process y(t). The models for the step response of these two 
processes are, respectively (Seborg et al., 1989), 

where t = the independent variable (time) 
y = the dependent variable 

Although K appears linearly in both response equations, 7,  in (2.12) and r1 
and r2 in (2.13) appear nonlinearly, so that nonlinear least squares must be used to 
estimate their values. The specific details of how to carry out the computations will 
be deferred until we take up numerical methods of unconstrained optimization in 
Chapter 6.  

2.4 . FACTORIAL EXPERIMENTAL DESIGNS 

Because variables in models are often highly correlated, when experimental data 
are collected, the xTx matrix in Equation 2.9 can be badly conditioned (see Appen- 
dix A), and thus the estimates of the values of the coefficients in a model can have 
considerable associated uncertainty. The method of factorial experimental design 
forces the data to be orthogonal and avoids this problem. This method allows you 
to determine the relative importance of each input variable and thus to develop a 
parsimonious model, one that includes only the most important variables and 
effects. Factorial experiments also represent efficient experimentation. You system- 
atically plan and conduct experiments in which all of the variables are changed 
simultaneously rather than one at a time, thus reducing the number of experiments 
needed. 

Because of the orthogonality property of factorial design, statistical tests are 
effective in discriminating among the effects of natural variations in raw materials, 
replicated unit operations (e.g., equipment in parallel), different operators, different 
batches, and other environmental factors. A proper orthogonal design matrix for 
collecting data provides independent estimates of the sums of squares for each vari- 
able as well as combinations of variables. Also the estimates of the coefficients 
have a lower variance than can be obtained with a nonorthogonal experimental 
design (Montgomery, 1997; Box et al., 1978). That is, you can have more confi- 
dence in the values calculated for Pi than would occur with a nonorthogonal design. 
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TABLE 2.1 
Orthogonal experimental design 

Scaled (coded) 
values of the 
independent 

variables Experiment Response 
number Y 21 Z2 

From a practical standpoint, the user of the model must decide which input 
variables should be studied because this will determine the number of tests that 
must be carried out (Drain, 1997). In a standard factorial design, 2" tests are 
required, where n is the number of input variables to be studied. You must also 
decide how much each input variable should be changed from its nominal value, 
taking into account the sensitivity of the process response to a change in a given 
input variable, as well as the typical operating range of the process. The determi- 
nation of the region of experimentation requires process knowledge. The experi- 
mental range should be chosen so that the resulting measurements of the response 
do not involve errors in the sensors that are greater than typical noise levels. 

Suppose you want to fit the linear model y = P1 + P5z1 + P3z2, where z1 and z, 
are the independent variables. Let the values of z1 and z2 in the experiment be delib- 
erately chosen by an experimental orthogonal design like that shown in Table 2.1. 

The values of the coded independent variables correspond to the four corners 
of a square in the z1 and z, space. The summations in Equation (2.5) simplify in this 
case (x, = 1, x2 = z,, x3 = z,): 

For the experimental design in Table 2.1, 
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FIGURE E2.6 
Orthogonal design for the variables temperature, 
pressure, and flowrate. 

It is quite easy to solve Equation (2.9) now because these expressions are 
uncoupled; the inverse of xTx for Equation (2.13) can be obtained by merely taking 
the reciprocal of the diagonal elements. 

EXAMPLE 2.6 IDENTIFICATION OF IMPORTANT VARIABLES 
BY EXPERIMENTATION USING AN ORTHOGONAL 
FACTORIAL DESIGN 

Assume a reactor is operating at the reference state of 220°C, 3 atm pressure, and a 
gas flow rate of 200 kgh. We can set up an orthogonal factorial design to model this 
process with a linear model Y = P, + Pp2 + P3x3 + P4x4 SO that the coded values of 
the xi are 1, - 1, and 0. Examine Figure E2.6. Suppose we select the changes in the 
operating conditions of _'20°C for the temperature, 2 2  atm for the pressure, and 250 
kglh for flowrates. Let x, = 1; then x,, x3, and x,, the coded variables, are calculated 
in terms of the proposed operating conditions as follows: 
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Based on the design the following data are collected: 

Y (yield) x2 x3 x4 

The extra data at the (0,O) point are used to obtain a measure of the error involved in 
the experiment. 

Solution. The matrices involved are 

h 

With these matrices you can compute the estimates of Pi by solving Equation (2.9), 
yielding 

In terms of the original variables 

It is clear from the size of the estimated coefficients that mass flowrate changes have 
a much smaller influence on the yield and thus, for practical purposes, could be elim- 
inated as an important independent variable. 
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If the independent variables are orthogonal, deciding whether to add or delete 
variables or functions of variables in models is straightforward using stepwise least 
squares (regression), a feature available on many software packages. Stepwise 
regression consists of sequentially adding (or deleting) a variable (or function) of 
variables to a proposed model and then testing at each stage to see if the added (or 
deleted) variable is significant. The procedure is only effective when the indepen- 
dent variables are essentially orthogonal. The coupling of orthogonal experimental 
design with optimization of operating conditions has been called "evolutionary 
operation" by which the best operating conditions are determined by successive 
experiments (Box and Draper, 1969; Biles and Swain, 1980). 

2.5 DEGREES OF FREEDOM 

In Section 1.5 we briefly discussed the relationships of equality and inequality con- 
straints in the context of independent and dependent variables. Normally in design 
and control calculations, it is important to eliminate redundant information and 
equations before any calculations are performed. Modern multivariable optimiza- 
tion software, however, does not require that the user clearly identify independent, 
dependent, or superfluous variables, or active or redundant constraints. If the num- 
ber of independent equations is larger than the number of decision variables, the 
software informs you that no solution exists because the problem is overspecified. 
Current codes have incorporated diagnostic tools that permit the user to include all 
possible variables and constraints in the original problem formulation so that you 
do not necessarily have to eliminate constraints and variables prior to using the soft- 
ware. Keep in mind, however, that the smaller the dimensionality of the problem 
introduced into the software, the less time it takes to solve the problem. 

The degrees of freedom in a model is the number of variables that can be spec- 
ified independently and is defined as follows: 

where NF = degrees of freedom 
Nv = total number of variables involved in the problem 
NE = number of independent equations (including specifications) 

A degrees-of-freedom analysis separates modeling problems into three cate- 
gories: 

1 .  NF = 0: The problem is exactly determined. If NF = 0, then the number of inde- 
pendent equations is equal to the number of process variables and the set of 
equations may have a unique solution, in which case the problem is not an opti- 
mization problem. For a set of linear independent equations, a unique solution 
exists. If the equations are nonlinear, there may be no real solution or there may 
be multiple solutions. 
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2.  NF > 0: The problem is underdetermined. If NF > 0, then more process vari- 
ables exist in the problem than independent equations. The process model is said 
to be underdetermined, so at least one variable can be optimized. For linear mod- 
els, the rank of the matrix formed by the coefficients indicates the number of 
independent equations (see Appendix A). 

3 .  NF < 0: The problem is overdetermined. If NF < 0, fewer process variables exist 
in the problem than independent equations, and consequently the set of equa- 
tions has no solutions. The process model is said to be overdetermined, and least 
squares optimization or some similar criterion can be used to obtain values of the 
unknown variables as described in Section 2.5. 

EXAMPLE 2.7 MODEL FOR A SEPARATION TRAIN 

Figure E2.7 shows the process flow chart for a series of two distillation columns, 
with mass flows and splits defined by x,, x2, . . . , x,. Write the material balances, and 
show that the process model comprises two independent variables and three degrees 
of freedom. 

Solution. The balances for columns 1 and 2 are shown below: 

Column 1 x, = x2 + x3 or x1 - x2 - x3 = 0 (a> 

There are three equations and three unknowns. 

40% light ends Medium solvent 

60% bottoms 
( ~ 2 )  

Heavy solvent 
( ~ 5 )  

FIGURE E2.7 
Train of distillation columns. 
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The coefficient matrix is 

Variables 

Equations (a) 1 -1 -1 
(b) -0.4 1 0 
(c) -0.6 0 1 

The three equations are not independent. The rank of the coefficient matrix is 2, 
hence there are only two independent variables, and column 1 involves 1 degree of 
freedom. 

Column 2 x2 = x4 + x5 or x2 - x4 - x5 = 0 (6) 

There is one equation and three unknowns, so there are two degrees of freedom.Over- 
all there are four equations (a), (b), (c), (d) and five variables.The coefficient matrix 
is 

Because the rank of the coefficient matrix is three, there are only three inde- 
pendent equations, so Equation (2.14) indicates that there are two degrees of freedom. 
You can reduce the dimensionality of the set of material balances by substitution of 
one equation into another and eliminating both variables ,and equations. 

In some problems it is advantageous to eliminate obvious dependent variables to 
reduce the number of equations that must be included as constraints. You can elimi- 
nate linear constraints via direct substitution, leaving only the nonlinear constraints, 
but the resulting equations may be too complex for this procedure to have merit. The 
following example illustrates a pipe flow problem in which substitution leads to one 
independent variable. 

EXAMPLE 2.8 ANALYSIS OF PIPE FLOW 

Suppose you want to design a hydrocarbon piping system in a plant between two 
points with no change in elevation and want to select the optimum pipe diameter that 
minimizes the combination of pipe capital costs and pump operating costs. Prepare a 
model that can be used to carry out the optimization. Identify the independent and 
dependent variables that affect the optimum operating conditions. Assume the fluid 
properties (p ,  p)  are known and constant, and the value of the pipe length (L) and 
mass flowrate (m) are specified. In your analysis use the following process variables: 
pipe diameter (D), fluid velocity (v), pressure drop (Ap), friction factor (f). 

Solution. Intuitively one expects that an optimum diameter can be found to minimize 
the total costs. It is clear that the four process variables are related and not indepen- 
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dent, but we need to examine in an organized way how the equality constraints (mod- 
els) affect the degrees of freedom. 

List the equality constraints: 

1. Mechanical energy balance, assuming no losses in fittings, no change in elevation, 
and so on. 

2. Equation of continuity, based on plug flow under turbulent conditions. 

3. A correlation relating the friction factor with the Reynolds number (Re). 

The friction factor plot is available in many handbooks, so that given a value of Re, 
one can find the corresponding value off. In the context of numerical optimization, 
however, using a graph is a cumbersome procedure. Because all of the constraints 
should be expressed as mathematical relations, we select the Blasius correlation for a 
smooth pipe (Bird et al., 1964): 

The model involves four variables and three independent nonlinear algebraic 
equations, hence one degree of freedom exists. The equality constraints can be manip- 
ulated using direct substitution to eliminate all variables except one, say the diameter, 
which would then represent the independent variables. The other three variables 
would be dependent. Of course, we could select the velocity as the single independent 
variable of any of the four variables. See Example 13.1 for use of this model in an 
optimization problem. 

2.6 EXAMPLES OF INEQUALITY AND EQUALITY CONSTRAINTS 
IN MODELS 

As mentioned in Chapter 1, the occurrence of linear inequality constraints in indus- 
trial processes is quite common. Inequality constraints do not affect the count of the 
degrees of freedom unless they become active constraints. Examples ofesuch con- 
straints follow: 
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1. Production limitations arise because of equipment throughput restrictions, stor- 
age limitations, or market constraints (no additional product can be sold beyond - 
some specific level). 

2. Raw material limitations occur because of limitations in feedstock supplies; 
these supplies often are determined by production levels of other plants within 
the same company. 

- 

3. Safety or operability restrictions exist because of limitations on allowable oper- 
ating temperatures, pressures, and flowrates. 

4. Physical property specifications on products must be considered. In refineries 
the vapor pressure or octane level of fuel products must satisfy some specifica- 
tion. For blends of various products, you usually assume that a composite prop- 
erty can be calculated through the averaging of pure component physical prop- 
erties. For N components with physical property values Vi and volume fraction 
y,, the average property f is 

EXAMPLE 2.9 FORMULATION OF A LINEAR INEQUALITY 
CONSTRAINT FOR BLENDING 

Suppose three intermediates (light naphtha, heavy naphtha, and "catalytic" oil) made 
in a refinery are to be blended to produce an aviation fuel. The octane number of the 
fuel must be at least 95. The octane numbers for the three intermediates are shown in 
the table. 

Amount blended , Octane 
(barrelstday) number 

Light naphtha XI 92 
Heavy naphtha X2 86 
Catalytic oil X3 97 

Write an inequality constraint for the octane number of the aviation fuel, assum- 
ing a linear mixing rule. 

Solution. Assume the material balance can be based on conservation of volume (as 
well as mass). The production rate of aviation gas is x4 = x1 + x2 + x,. The volume- 
average octane number of the gasoline can be computed as 

x 1 
(92) + X2 (86) + x3 (97) 2 95 (a)  

x, + X2 + Xj Xl + X2 + X3 x, + X2 + Xg 
Multiplying Equation (a) by (x, + x, + x,) and rearranging, we get 

This constraint ensures that the octane number specification is satisfied. Note that 
Equation (b)  is linear. 
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EXAMPLE 2.10 LINEAR MATERIAL BALANCE MODELS 

In many cases in which optimization is applied, you need to determine the allocation 
of material flows to a set of processes in order to maximize profits. Consider the 
process diagram in Figure E2.10. 

FIGURE E2.10 
Flow diagram for a multiproduct plant. 

Each product (E, F: G) requires different (stoichiometric) amounts of reactants 
according to the following mass balances: 

Reactants 
Product (1-kg product) 

Prepare a model of the process using the mass balance equations. 

Solution. lbelve mass flow variables can be defined for this process. Let x,, x2, x, 
be the mass input flows of A to each process. Similarly let x4, x5, x6, and x7 be the indi- 
vidual reactant flows of B and C, and define x,, x9, and x,, as the three mass product 
flows (E, E G). Let x,, and x12 be the total amounts of A and B used as reactants (C 
is the same as x,). Thus, we have a total of 12 variables. 

The linear mass balance constraints that represent the process are: 
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x4 = 0 . 3 3 3 ~ ~  0 

With 12 variables and 9 independent linear equality constraints, 3 degrees of freedom 
exist that can be used to maximize profits. Note that we could have added an overall 
material balance, x,, + x12 + x, = x, + x9 + x,,, but this would be a redundant equa- 
tion since it can be derived by adding the material balances. 

Other constraints can be specified in this problem. Suppose that the supply of A 
was limited to 40,000 kglday, or 

If this constraint is inactive, that is, the optimum value of xll  is less than 40,000 
kglday, then, in effect, there are still 3 degrees of freedom. If, however, the optimiza- 
tion procedure yields a value of x,, = 40,000 (the optimum lies on the constraint, such 
as shown in Figure 1.2), then inequality constraint f becomes an equality constraint, 
resulting in only 2 degrees of freedom that can be used for optimization. You should 
recognize that it is possible to add more inequality constraints, such as constraints on 
materials supplies, in the model, for example, 

These can also become "active" constraints if the optimum lies on the constraint 
boundary. Note that we can also place inequality constraints on production of E, F, 
and G in order to satisfy market demand or sales constraints 

Now the analysis is much more complex, and it is clear that more potential equal- 
ity constraints exist than variables if all of the inequality constraints become active. It 
is possible that optimization could lead to a situation where no degrees of freedom 
would be left--one set of the inequality constraints would be satisfied as equalities. 
This outcome means no variables remain to be optimized, and the optimal solution 
reached would be at the boundaries, a subset of the inequality constraints. 

Other constraints that can be imposed in a realistic problem formulation include 

1. Operating limitations (bottlenecks)-there could be a throughput limitation on 
reactants to one of the processes (e.g., available pressure head). 

2. Environmental limitations-there could be some additional undesirable by-products 
H, such as the production of toxic materials (not in the original product list given 
earlier), that could contribute to hazardous conditions. 
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You can see that the model for a realistic process can become extremely com- 
plex; what is important to remember is that steps 1 and 3 in Table 1.1 provide an 
organized framework for identifying all of the variables and formulating the objec- 
tive function, equality constraints, and inequality constraints. After this is done, you 
need not eliminate redundant variables or equations. The computer software can 
usually handle redundant relations (but not inconsistent ones). 
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PROBLEMS 

2.1 Classify the following models as linear or nonlinear 

(a) Two-pipe heat exchanger (streams 1 and 2) 

BC: T,(t, 0) = a IC: TI(O,Z) = 0 

where T = temperature Cp = heat capacity 

t = time S = area factor 

BC = boundary conditions IC = initial conditions 

p = density 

(b) Diffusion in a cylinder 
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where C = concentration r = radial direction 
t = time D = constant 

2.2 Classify the following equations as linear or nonlinear (y = dependent variable; x, z = 
independent variables) 

(a) y: + y ;  = a 2  

avY a2vy 
(b) v,- = p- 

ax dz2 

2.3 Classify the models in Problems 2.1 and 2.2 as steady state or unsteady state. 

2.4 Classify the models in Problems 2.1 and 2.2 as lumped or distributed. 

2.5 What type of model would you use to represent the process shown in the figure? 
Lumped or distributed? Steady state or unsteady state? Linear or nonlinear? 

Air + 

Liquid + 

FIGURE P2.5 
A wastewater treatment system uses five stacked 
venturi sections to ensure maximum oxygenation 
efficiency. 
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2.6 Determine the number of independent variables, the number of independent equations, 
and the number of degrees of freedom for the reboiler shown in the figure. What vari- 
ables should be specified to make the solution of the material and energy balances 
determinate? (Q = heat transferred) 

Liquid 1 >Vapor 

I 

Figure P2.6 

2.7 Determine the best functional relation to fit the following data sets: 

(a) (b) (c) (dl 

2.8 The following data have been collected: 

Which of the following three models best represents the relationship between Y and x? 

y = e"+BX 

y = e"+P,"+Pd 

y = a x @  

2.9 Given the following equilibrium data for the distribution of SO, in hexane, determine 
a suitable linear (in the parameters) empirical model to represent the data. 
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xi Yi 
pressure weight fraction 

(psi4 hexane 

2.10 (a) Suppose that you wished to curve fit a set of data (shown in the table) with the 
equation 

Calculate c,, c,,  and c, (show what summations need to be calculated). How do 
you find c,  and c, if co is set equal to zero? 

(b) If the desired equation were y = alxe -"@, how could you use least-squares to find 
a,  and a,? 

2.11 Fit the following data using the least squares method with the equation: 

Compare the results with a graphical (visual) estimate. 

2.12 Fit the same data in Problem 2.11 using a quadratic fit. Repeat for a cubic model (y = 

C,  + clx + cg2  + c3x3). Plot the data and the curves. 

2.13 You are asked to get the best estimates of the coefficients b,, b,, and c in the follow- 
ing model 

given the following data. 
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Explain step by step how you would get the values of the coefficients. 

2.14 Fit the following function for the density p as a function of concentration C, that is, 
determine the value of a in 

given the following measurements for p and C: 

2.15 (a) For the given data, fit a quadratic function of y versus x by estimating the values 
of all the coefficients. 

(b) Does this set of data constitute an orthogonal design? 

2.16 Data obtained from a preset series of experiments was 

Temperature, T Pressure, p Yield, Y 
( O F )  ( a t 4  

Fit the linear model ? = b, + b,x, + b2x2 using the preceding table. Report the esti- 
mated coefficients b,, b,, and b,. Was the set of experiments a factorial design? 

2.17 You are given data for Y versus x and asked to fit an empirical model of the form: 

y = a  + px 

where p is a known value. Give an equation to calculate the best estimate of a. 
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2.18 A replicated two-level factorial experiment is carried out as follows (the dependent 
variables are yields): 

Time 
(h) 

Temperature Yield 
("C) (%) 

Find the coefficients in a first-order model, Y = Po + P,x, + Ps2. (Y = yield, x, = 
time, x, = temperature.) 

2.19 An experiment based on a hexagon design was carried out with four replications at the 
origin, producing the following data: 

Factor levels Design levels 

Yield Temperature Time 
(%I ("C) (h) XI x2 

96.0 75 2.0 1 .000 0 
78.7 60 2.866 0.500 0.866 
76.7 30 2.866 -0.500 0.866 
54.6 15 2.0 -1.000 0 
64.8 30 1.134 -0.500 -0.866 
78.9 60 1.134 0.500 -0.866 
97.4 45 2.0 0 0 
90.5 45 2.0 0 0 
93.0 45 2.0 0 0 
86.3 45 2.0 0 0 

temperature - 45 
Coding: xl  = x2 = time - 2 

30 

Fit the full second-order (quadratic) model to the data. 

2.20 A reactor converts an organic compound to product P by heating the material in the 
presence of an additive A. The additive can be injected into the reactor, and steam can 
be injected into a heating coil inside the reactor to provide heat. Some conversion can 
be obtained by heating without addition of A, and vice versa. In order to predict the 
yield of P, Y, (lb mole product per lb mole feed), as a function of the mole fraction of 
A, X,, and the steam addition S (in lbllb mole feed), the following data were obtained. 
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(a) Fit a linear model 

Y, = co + clXA + c2S 

that provides a least squares fit to the data. 
(b) If we require that the model always must fit the point Y, = 0 for X, = S = 0, cal- 

culate c,, c,, and c2 SO that a least squares fit is obtained. 

2.21 If you add a feed stream to the equilibrium stage shown in the figure, determine the 
number of degrees of freedom for a binary mixture (Q = heat transferred). 

FIGURE P2.21 

2.22 How many variables should be selected as independent variables for the furnace 
shown in the figure? 

25% excess dry air 

Fuel 70°F 

- 

Q (loss) 

FIGURE P2.22 

100°F 

v 
co- 

Flue gases o 
2 1900°F N2 

80% CH4 

20% N2 

2.23 Determine the number of independent variables, the number of independent equations, 
and the number of degrees of freedom in the following process (A, B, and D are chem- 
ical species): 

v 

Furnace 3 
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Mixer I-{ I 

F 1 Reactor F3 

A, B A, B, D ' Distill- 
A ation 

L 

F4 @ B  . 
V 

A 
Splitter B * P  

FIGURE P2.23 

The encircled variables have known values. The reaction parameters in the reactor are 
known as the fraction split at the splitter between F4 and F5. Each stream is a single 
phase. 

2.24 A waste heat boiler (see Fig. P2.24) is to be designed for steady-state operation under 
the following specifications. 

Stream drum 

Risers 
Downcomers Shell 

> Ls - > 
Gas in Gas out - 

Tube 

n n n n 

diameter, d 

FIGURE P2.24 
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Total gas flow 25,000 kg/h 
Gas composition SO2 (9%), 0, (12%), N, (79%) 
Gas temperatures in = 1200°C; out = 350°C 
Stream pressure outside tubes 250 kPa 
Gas properties Cp = 0.24 kcal/(g)("C) 

p = 0.14 kg/(m)(h) 
. k = 0.053 kcaV(m)(h)("C) 

Cost data are 
Shell $2.5O/kg 
Tubes $1 50/m2 
Electricity $0.60/kWh 
Interest rate 14% 

Base the optimization on just the cost of the shell, tubes, and pumping costs for the 
gas. Ignore maintenance and repairs. 

Formulate the optimization problem using only the following notation (as 
needed): 

surface area of tubes, m2 
cost of shell, $ 
cost of tubes, $ 
heat capacity of gas, kcaY(kg)("C) 
diameter of shell, m 
tube outer and inner diameters, m 
friction factor 
acceleration due to gravity, m/s2 
gas side heat transfer coefficient inside the tubes, kcaV(m2)(h)("C) 
interest rate, fraction 
gas thermal conductivity, kcaV(m)(h)('C) 
length of shell, m 
molecular weight of gas 
number of tubes 
life of equipment, years . 
duty of the boiler, kcal/h 
gas temperature entering and leaving the boiler, "C 
temperature in general 
density of gas, kg/m3 
viscosity of gas, kg/(m)(h) 
gas velocity, rnls 
gas flow, kg/h 
weight of shell, tons 
efficiency of blower 
gas pressure drop, kPa 
shell thickness, m 

How many degrees of freedom are in the problem you formulated? 
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THE FORMULATION OF objective functions is one of the crucial steps in the appli- 
cation of optimization to a practical problem. As discussed in Chapter 1, you must 
be able to translate a verbal statement or concept of the desired objective into math- 
ematical terms. In the chemical industries, the objective function often is expressed 
in units of currency (e.g., U.S. dollars) because the goal of the enterprise is to min- 
imize costs or maximize profits subject to a variety of constraints. In other cases the 
problem to be solved is the maximization of the yield of a component in a reactor, 
or minimization of the use of utilities in a heat exchanger network, or minimization 
of the volume of a packed column, or minimizing the differences between a model 
and some data, and so on. Keep in mind that when formulating the mathematical 
statement of the objective, functions that are more complex or more nonlinear are 
more difficult to solve in optimization. Fortunately, modern optimization software 
has improved to the point that problems involving many highly nonlinear functions 
can be solved. 

Although some problems involving multiple objective functions cannot be 
reduced to a single function with common units (e.g., minimize cost while simul- 
taneously maximizing safety), in this book we will focus solely on scalar objec- 
tive functions. Refer to Hurvich and Tsai (1993), Kamimura (1997), Rusnak et al. 
(1993), or Steur (1986) for treatment of multiple objective functions. You can, of 
course, combine two or more objective functions by trade-off, that is, by suitable 
weighting (refer to Chapter 8). Suppose you want to maintain the quality of a 
product in terms of two of its properties. One property is the deviation of the vari- 
able yi  (i designates the sample number) from the setpoint for the variable, y,. The 
other property is the variability of yi from its mean y (which during a transi- 
tion may not be equal to y,). If you want to simultaneously use both criteria, you 
can minimize f: 

where the wi are weighting factors to be selected by engineering judgment. From 
this viewpoint, you can also view each term in the summations as being weighted 
equally. 

This chapter includes a discussion of how to formulate objective functions 
involved in economic analysis, an explanation of the important concept of the 
time value of money, and an examination of the various ways of carrying out a 
profitability analysis. In Appendix B we cover, in more detail, ways of estimat- 
ing the capital and operating costs in the process industries, components that are 
included in the objective function. For examples of objective functions other than 
economic ones, refer to the applications of optimization in Chapters 11 to 16. 

3.1 ECONOMIC OBJECTIVE FUNCTIONS 

The ability to understand and apply the concepts of cost analysis, profitability 
analysis, budgets, income-and-expense statements, and balance sheets are key 
skills that may be valuable. This section treats two major components of economic 
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objective functions: capital costs and operating costs. Economic decisions are made 
at various levels of detail. The more detail involved, the greater the expense of 
preparing an economic study. In engineering practice you may need to prepare pre- 
liminary cost estimates for projects ranging from a small piece of equipment or a 
new product to a major plant retrofit or design. 

To introduce the involvement of these two types of costs in an objective func- 
tion, we consider three simple examples: The first involves only operating costs and 
income, the second involves only capital costs, and the third involves both. 

EXAMPLE 3.1 OPERATING PROFITS AS THE OBJECTIVE 
FUNCTION 

Let us return to the chemical plant of Example 2.10 with three products (E, F, G) and 
three raw materials (A, B, C) in limited supply. Each of the three products is produced 
in a separate process (1,2, 3); Figure E3.1 illustrates the process. 

Process data 
Process 1: A + B + E 

Process 2: A + B + F 

Process 3: 3A + 2B + C + G 

Maximum 
Raw available Cost 

material (kglday) (gflcg) 

FIGURE E3.1 
Flow diagram for a multiproduct plant. 
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Reactant Processing Selling price 
requirements cost (product) (product) 

Process Product (kglkg product) (@kg) (@kg) 

E $A,  S B  1.5 
F $A, & B  0.5 
G $ A , ~ B , !  C 1 .O 

(mass is conserved) 

Formulate the objective function to maximize the total operating profit per day in the 
units of $/day. 

Solution The notation for the mass flow rates of reactants and products is the same 
as in Example 2.10. 

The income in dollars per day from the plant is found from the selling prices 
(0.04E + 0.033F + 0.038G). The operating costs in dollars per day include 

Raw material costs: 0.015A + 0.02B + 0.025C 

Processing costs: 0.015E + 0.005F + 0.01G 

Total costs in dollars per day = 0.015A + 0.02B + 0.025C + 0.015E 

The daily profit is found by subtracting daily operating costs from the daily income: 

Note that the six variables in the objective function are constrained through material 
balances, namely 

Also 

The optimization problem in this example comprises a linear objective function and 
linear constraints, hence linear programming is the best technique for solving it (refer 
to Chapter 7). 
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The next example treats a case in which only capital costs are to be optimized. 

EXAMPLE 3.2 CAPITAL COSTS AS THE OBJECTIVE 
FUNCTION 

Suppose you wanted to find the configuration that minimizes the capital costs of a 
cylindrical pressure vessel. To select the best dimensions (length L and diameter D) of 
the vessel, formulate a suitable objective function for the capital costs and find the opti- 
mal (WD) that minimizes the cost function. Let the tank volume be V, which is fixed. 
Compare your result with the design rule-of-thumb used in practice, (WD)"Pt = 3.0. 

Solution Let us begin with a simplified geometry for the tank based on the follow- 
ing assumptions: 

1. Both ends are closed and flat. 
2. The vessel walls (sides and ends) are of constant thickness t with density p, and 

the wall thickness is not a function of pressure. 
3. The cost of fabrication and material is the same for both the sides and ends, and is 

S (dollars per unit weight). 
4. There is no wasted material during fabrication due to the available width of metal 

plate. 

The surface area of the tank using these assumptions is equal to , 

(ends) (cylinder) 

From assumptions 2 and 3, you might set up several different objective functions: 

ITD~ 
fi=, + TDL (units of area) (b) 

T D ~  
f 2 = P ( T + ~ D L ) * t  (units of weight) 

+ 7iDL) f (units of cost in dollars) 

Note that all of these objective functions differ from one another only by a multi- 
plicative constant; this constant has no effect on the values of the independent vari- 
ables at the optimum. For simplicity, we therefore use f, to determine the optimal val- 
ues of D and L. Implicit in the problem statement is that a relation exists between 
volume and length, namely the constraint 

Hence, the problem has only one independent variable. 
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Next use (e) to remove L from (b) to obtain the objective function 

Differentiation off, with respect to D for constant V, equating the derivative to zero, 
and solving the resulting equation gives 

This result implies that f, - VU3, a relationship close to the classical "six-tenths" rule 
used in cost estimating. From (e), Lopt = ( 4 V l ~ ) ~ ' ~ ;  this yields a rather surprising 
result, namely 

The (UD)"Pt ratio is significantly different from the rule of thumb stated earlier in the 
example, namely, WD = 3; this difference must be due to the assumptions (perhaps 
erroneous) regarding vessel geometry and fabrication costs. 

Brummerstedt (1944) and Happel and Jordan (1975) discussed a somewhat more 
realistic formulation of the problem of optimizing a vessel size, making the following 
modifications in the original assumptions: 

1. The ends of the vessel are 2: 1 ellipsoidal heads, with an area for the two ends of 
2(1.16D2) = 2.32D2. 

2. The cost of fabrication for the ends is higher than the sides; Happel and Jordan 
suggested a factor of 1.5. 

3. The thickness t is a function of the vessel diameter, allowable steel stress, pressure 
rating of the vessel, and a corrosion allowance. For example, a design pressure of 
250 psi and a corrosion allowance of in. give the following formula for t in inches 
(in which D is expressed in feet): 

The three preceding assumptions require that the objective function be expressed in 
dollars since area and weight are no longer directly proportional to cost 

The unit conversion of t from inches to feet does not affect the optimum (LID), nor 
do the values of p and S, which are multiplicative constants. The modified objective 
function, substituting Equation (i) in Equation (j), is therefore 

The volume constraint is also different from the one previously used because of the 
dished heads: 

Equation ( I )  can be solved for L and substituted into Equation (k). However, No ana- 
lytical solution for DOpt by direct differentiation of the objective function is possible 
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now because the expression for f6, when L is eliminated, leads to a complicated poly- 
nomial equation for the objective function: 

When f, is differentiated, a fourth-order polynomial in D results; no simple analytical 
solution is possible to obtain the optimum value of D. A numerical search is therefore 
better for obtaining DOpt and should be based on f, (rather than examining df71dD = 
0). However, such a search will need to be performed for different values of V and the 
design pressure, parameters which are embedded in Equation (i). Recall that Equa- 
tions (i) and (my are based on a design pressure of 250 psi. Happel and Jordan (1975) 
presented the following solution for (WD)"Pt: 

TABLE E3.2 
Optimum (LID) 

Design pressure (psi) 

Capacity (gal) 100 250 400 

In Chapter 5 you will learn how to obtain such a solution. Note that for small 
capacities and low pressures, the optimum WD approaches the ideal case; examine 
Equation (h) considered earlier. It is clear from Table E3.2 that the rule of thumb that 
(UD)"Pt = 3 can be in error by as much as $50 percent from the actual optimum. 
Also, the optimum does not take into account materials wasted during fabrication, a 
factor that could change the answer. 

Next we consider an example in which both operating costs and capital 
costs are included in the objective function. The solution of this example requires 
that the two types of costs be put on some common basis, namely, dollars per-year. 

EXAMPLE 3.3 OPTIMUM THICKNESS OF INSULATION 

In specifying the insulation thickness for a cylindrica vessel or pipe, it is necessary 
to consider both the costs of the insulation and the value of the energy saved by adding 
the insulation. In this example we determine the optimum thickness of insulation for 
a large pipe that contains a hot liquid. The insulation is added to reduce heat losses 
from the pipe. Next we develop an analytical expression for insulation thickness 
based on a mathematical model. 

The rate of heat loss from a large insulated cylinder (see Figure E3.3), for which 
the insulation thickness is much smaller than the cylinder diameter and the inside heat 
transfer coefficient is very large, can be approximated by the formula 

AAT 
= x / k  + l l h ,  
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Insulation of 
thickness x 

Air 

Q (heat loss) 

AT = T (hot fluid) - T (air) 

FIGURE E3.3 
Heat loss from an insulated pipe 

where AT = average temperature difference between pipe fluid and ambient sur- 
roundings, K 

A = surface area of pipe, m2 
x = thickness of insulation, m 

h, = outside convective heat transfer coeffient, kJ/(h)(m2)(K) 
k = thermal conductivity of insulation, kJ/(h)(m)(K) 
Q = heat loss, kJ/h 

All of the parameters on the right hand side of Equation (a) are fixed values except for 
x, the variable to be optimized. Assume the cost of installed insulation per unit area can 
be represented by the relation Co + C,x, where Co and C, are constants (Co = fixed 
installation cost and C, = incremental cost per foot of thickness). The insulation has a 
lifetime of 5 years and must be replaced at that time. The funds to purchase and install 
the insulation can be borrowed from a bank and paid back in five annual installments. 
Let r be the fraction of the installed cost to be paid each year to the bank. The value of 
r selected depends on the interest rate of the funds borrowed and will be explained in 
Section 3.2. 

Let the value of the heat lost from the pipe be H, ($/lo6 kJ). Let Y be the num- 
ber of hours per year of operation. The problem is to 

1. Formulate an objective function to maximize the savings in operating cost, savings 
expressed as the difference between the value of the heat conserved less the annu- 
alized cost of the insulation. 

2. Obtain an analytical solution for x*, the optimum. 

Solution If operating costs are to be stated in terms of dollars per year, then the cap- 
ital costs must be stated in the same units. Because the funds required for the insula- 
tion are to be paid back in equal installments over a period of 5 years, the payment 
per year is r(Co + Clx)A. The energy savings due to insulation can be calculated from 
the difference between Q(x = 0) = Q,, and Q: 
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The objective function to be maximized is the present value of heat conserved in dol- 
lars less the annualized capital cost (also in dollars): 

dollars 1 
f = (Qo - Q) ( p) Y ( ~ )  year H ~ ( ~ ) ;  (year) 

Substitute Equation (b) into (c), differentiate f with respect to x, and solve for the opti- 
mum ( d m  = 0): 

Examine how x* varies with the different parameters in (d), and confirm that the trends 
are physically meaningful. Note that the heat transfer area A does not appear in Equa- 
tion (d). Why? Could you formulate f as a cost minimization problem, that is, the sum 
of the value of heat lost plus insulation cost? Does it change the result for x*? How do 
you use this result to select the correct commercial insulation size (see Example 1. l)? 

Appendix B explains ways of estimating the capital and operating costs, leading to 
the coefficients in economic objective functions. 

3.2 THE TIME VALUE OF MONEY IN OBJECTIVE FUNCTIONS 

So far we have explained how to estimate capital and operating costs. In Example 3.3, 
we formulated an objective function for economic evaluation and discovered that 
although the revenues and operating costs occur in the future, most capital costs are 
incurred at the beginning of a project. How can these two classes of costs be evalu- 
ated fairly? The economic analysis of projects that incur income and expense over 
time should include the concept of the time value of money. This concept means that 
a unit of money (dollar, yen, euro, etc.) on hand now is worth more than the same unit 
of money in the future. Why? Because $1000 invested today can earn additional dol- 
lars; in other words, the value of $1000 received in the future will be less than the 
present value of $1000. 

For an example of the kinds of decisions that involve the time value of money, 
examine the advertisement in Figure 3.1. For which option do you receive the most 
value? Answers to this and similar questions sometimes may be quickly resolved 
using a calculator or computer without much thought. To understand the underly- 
ing assumptions and concepts behind the calculations, however, you need to 
account for cash flows in and out using the investment time line diagram for a proj- 
ect. Look at Figure 3.2. 
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You Decide Which Option You Prefer If You Are The 
Winner Of The Sweepstakes: 

pq pq pq 
OR OR 

$2,000,000 NOW. $1,000,000 NOW. $167,000 a year 
Payable immediately. PLUS $137,932 a year for 30 years. 

for 29 years. 

Tell us your choice. Read the instructions on the reverse to learn 
how you can activate your Grand Prize Option. 

FIGURE 3.1 
Options for potential sweepstakes winners. Which option provides the optimal value? 

FIGURE 3.2 
The time line with divisions 
corresponding to 6 time periods. 

6 

Money paid out 

Money received I 

FIGURE 3.3 
Representation of cash received and disbursed. 

Figure 3.3 depicts money received (or income) with vertical arrows .pointing 
upward; money paid out (or expenses) is depicted by vertical arrows pointing 
downward. With the aid of Figure 3.3 you can represent almost any complicated 
financial plan for a project. For example, suppose you deposit $1000 now (the pres- 
ent value P) in a bank savings account that pays 5.00 percent annual interest com- 
pounded monthly, and in addition you plan to deposit $100 per month at the end of 
each month for the next year. What will the future value F of your investments be 
at the end of the year? Figure 3.4 outlines the arrangement on the time line. 

Note that cash flows corresponding to the accrual of interest are not represented 
by arrows in Figure 3.4. The interest rate per month is 0.4167, not 5.00 percent (the 
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1 PMT PMT PMT PMT PMT 
p $100 $100 $100 $100 $100 

$1000 

FIGURE 3.4 
The transactions for the example placed on the time line. 

Construction Start up Product Shut down Salvage 
manufactured 

FIGURE 3.5 
Cash flow transactions for a proposed plant placed on the time line. 

annual interest rate). The number of compounding periods is n = 12. PMT is the 
periodic payment. 

Figure 3.5 shows (using arrows only) some of the typical cash flows that might 
occur from the start to the end of a proposed plant. As the plant is built, the cash 
flows are negative, as is most likely the case during startup. Once in operation, the 
plant produces positive cash flows that diminish with time as markets change and 
competitors start up. Finally, the plant is closed, and eventually the equipment sold 
or scrapped. 

It is easy to develop a general formula for investment growth for the case in 
which fractional interest i is compounded once per period (month, year). (Note: On 
most occasions we will cite i in percent, as is the common practice, even though in 
problem calculations i is treated as a fraction.) If P is the original investment (pres- 
ent value), then P(l + i) is the amount accumulated after one compounding period, 
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say 1 year. Using the same reasoning, the value of the investment in successive 
years for discrete interest payments is 

t = n years Fn = P(l + i)" (3.2~) 

The symbol Fn is called thefiture worth of the investment after year n, that is, the 
future value of a current investment P based on a specific interest rate i. 

Equation (3.2~) can be rearranged to give present value in terms of future 
value, that is, the present value of one future payment F  at period n 

For continuous compounding Equation (3.2~) reduces to Fn = Pein. Refer to Gar- 
rett, Chapt. 5 (1989) for the derivation of this formula. 

The following is a list of some useful extensions of Equation (3.3). Note that 
the factors involved in Equations (3.3)-(3.7) are F, P, i ,  and n, and given the values 
of any three, you can calculate the fourth. Software such as Microsoft Excel and 
hand calculators all contain programs to execute the calculations, many of which 
must be iterative. 

1. Present value of a series of payments Fk (not necessarily equal) at periods k = 
1, ..., n in the future: 

P = 
Fl + F2 + ... + Fn-1 + Fn 

(1 + i )  (1 + i ) 2  (1 + i ln  - ' (1 + i)" (3.4) 

2. Present value of a series of uniform future payments each of value 1 starting in 
period m and ending with period n: 

n 1 k n + l  1 - , 1  

k-m (1 + i ) k  [()()] m = i ( l + i ) m - l  i ( l  + i)" 

(1 + i)n-m+l - 
- - 

1 

i(l + i)" 

Ifm = 1, 

n 1 ' ( 1  + i)" - 1 
P =  x - - 

k G 1  (1 + i lk  i(l + i)" 
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3. Future value of a series of (not necessarily equal) payments P,: 

4. Future value of a series of uniform future payments each of value 1 starting in 
period rn and ending in period n: 

If m = 1 so that k = 1,  the equivalent of Equation (3.7) is 

The right-hand side of Equation (3.5) is known as the "capital recovery factor" or 
"present worth factor," and the inverse of the right-hand side is known as the "repay- 
ment multiplier" r. 

Tables of the repayment multiplier are listed in handbooks and some textbooks. 
Table 3.1 gives r over some limited ranges as a function of n and i. 

TABLE 3.1 

i(1 + i)" 
Values for the fraction r = 

(1 + i)" - 1 

Interest rate 

Key: n = number of years i = interest rate, % 
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For uniform (equal) future payments each of value F, Equation (3.5) becomes 

If the interest is calculated continuously, rather than periodically, the equivalent 
of Equation (3.5) is (with the uniform payments of value F) 

The inverse of the right-hand side of Equation (3.6) is known in economics as 
the "sinking fund deposit factor," that is, how much a borrower must periodically 
deposit with a trustee to eventually pay off a loan. 

Now let us look at some examples that illustrate the application of the concepts 
and relations discussed earlier. 

EXAMPLE 3.4 PAYING OFF A LOAN 

You borrow $35,000 from a bank at 10.5% interest to purchase a multicone cyclone 
rated at 50,000 ft3/min. If you make monthly payments of $325 (at the end of the 
month), how many payments will be required to pay off the loan? 

Solution The diagram on the time line in Figure E3.4a shows the cash flows. 
Because the payments are uniform, we can use Equation (3.5), but use $325 per 
month rather than $1. 

PMT 
-325 

FIGURE E3.4a 

35,000 - 325[(' + 
i(l + i)" 

Equation (a) can be solved for n (months). Use Equation (3.8) to simplify the procedure. 

r 
(i + 1)" = - 

r - i  
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In the example the data are 

R = 
2.85263 

= 327.4 months 
0.0087 12 

The final payment (No. 328) will be less than $325.00, namely $143.1 1.  
For income tax purposes, you can calculate the principal and interest in each pay- 

ment. For example, at the end of the first month, the interest paid is $35,000 (0.008750) 
= $306.25 and the principal paid is $325.00 - $306.25 = $18.75, so that the principal 
balance for the next month's interest calculation is $34,981.25. Iteration of this proce- 
dure (best done on a computer) yields h e  "amortization schedule" for the loan. 

You can carry out the calculations using the Microsoft Excel function key (found 
by clicking on the "insert'? button in the toolbar): 
1. Click on the function key (f,.) in the spreadsheet too1 bar. 
2. Choose financial function category (Figure E3.4b). 
3. Select NPER. 

mi a con 

Fun 

M o s t  Recently used- 
All 

Date b. Time 
Math & Trig 
Statistical 
Lookup & Reference 
Database 
Text 
Logical 

R&um the m r m k  r$ mriods Far an investment based on ~eriodic, 
cm s r ~ s t  rat: 

I- 

FIGURE E3.4b 
Permission by Microsoft. 
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- 
- . -- .  * - "  - 

nt bared on periodic, cons number I 

~brest  ri 
:urn5 the 
3nstant C 

of period 
ate. 

sent valu 
is worth 

t that a 5 Future 

- 

; the pre! 
laymbnts 

e, or the 
now. 

FIGURE E3.4~ 
Permission by Microsoft. 

A A -A- 

C -- -. -- - - -- - 
Interest Payback Hate Number of Payments 

FIGURE E3.4d 
Permission by Microsoft. 

4. Enter correct vaIues for payment 1-$325), rate (0.105/12), and present value 
($35.000) (Figure E3.4c), and click on "'OK to get the screen shown in Figure 
E3.4d. The solution appears in the "Number of Payments" cell (Figure E3.4e). 

Note the many other options that can be called up by the function key. 
You can also carry out the calculations in a spreadsheet format. 

1. Enter in the vaIue for the interest by typing "=0.105/12" in the interest cell. 
2. Type "= -325135000" in the payback rate cell. 
3. In our example we type "In(b2/(b2-al))lln( l +a I)" to calculate the number of 

payments. 
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1 0  & e @ p  -- x & m R d  - . -  r. . % c g  -- v- , - 4 
----" I 

I Ariaf ' I  Q I s-- +'a .00 
" *p-p- - rn +lo / tr 

+.,.+ .- - 

= 1 
B --- C - 

Interest rayhack Rate Number of  Payments 
0.00875 - 0.009285714 - -- - - 327.4392653 , 

FIGURE E3.4e 
Permission by Microsoft. 

EXAMPLE 3.5 SELECTION OF THE CHEAPEST ANODES 

Ordinary anodes for an electrochemical process last 2 years and then have to be 
replaced at a cost of $20,000. An alternative choice is to buy impregnated anodes that 
last 6 years and cost $56,000 (see Figure E3.5). If the annual interest rate is 6 percent 
per year, which alternative would be the cheapest? 

Alternative A Alternative B 

B B 
$20,000 $20,000 $20,000 $56,000 

FIGURE E3.5 

Solution We want to calculate the present value of each alternative. The present 
value of alternative A using Quation (3.4) is 

The present value of alternative B is -$56,000. Alternative A gives the largest (small- 
est negative) present value. 
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3.3 MEASURES OF PROFITABILITY 

As mentioned previously, most often in the chemical process industries the objec- 
tive function for potential projects is some measure of profitability. The projects 
with highest priorities are the ones with the highest expected profitability; "ex- 
pected" implies that probabilistic considerations must be taken into account (Palvia 
and Gordon, 1992), such as calculating the upper and lower bounds of a prediction. 
In this section, however, we are concerned with a deterministic approach for eval- 
uating profitability, keeping in mind that different definitions of profitability can 
lead to different priority rankings. Analyses are typically carried out in spreadsheets 
to generate a variety of possibilities that allow the projects to be ranked as a prel- 
ude to decision making. 

Among the numerous measures of economic performance that have been pro- 
posed, two of the simplest are 
1. Payback period (PBP)-how long a project must operate to break even; ignores 

the time value of money. 

Cost of investment 
PBP = 

Cash flow per period 

Example: For an investment of $20,000 with a return of $500 per week the PBP is 

$20,000 
$500 

= 40 weeks 

2.Return on investment (RO1)-a simple yield calculation without taking into 
account the time value of money 

Net income (after taxes) per year 
ROI (in percent) = X 100 

Cost of investment 

Example: Given the net return of $6000 (per year) for an initial investment of 
$45,000, the ROI is 

Two other measures of profitability that take into account the time value of 
money are 

1. Net present value (NPV). 
2. Internal rate of return (IRR). 

NPV takes into account the size and profitability of a project, but the IRR measures 
only profitability. If a company has sufficient resources to consider several small 
projects, given a prespecified amount of investment, a number of high-value IRRs 
usually provide a higher overall NPV than a single large project. 
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FIGURE 3.6 
Cash flows used in calculating net 
present value (NPV) and internal 
rate of return (IRR) for a typical 
capital investment project. 

Figure 3.6 designates the cash flows that might occur for a cash investment in 
a project. NPV is calculated by adding the initial investment (represented as a neg- 
ative cash flow) to the present value of the anticipated future positive (and negative) 
cash flows. Equation (3.4) showed how to calculate NPV. 

If the NPV is positive, the investment increases the company's assets: The 
investment is financially attractive. 
If the NPV is zero, the investment does not change the value of the company's 
assets: The investment is neutral. 
If the NPV is negative, the investment decreases the company's assets: The 
investment is not financially attractive. 

The higher the NPV among alternative investments with the same capital outlay, 
the more attractive the investment. 

IRR is the rate of return (interest rate, discount rate) at which the future cash 
flows (positive plus negative) would equal the initial cash outlay (a negative cash 
flow). The value of the IRR relative to the company standards for internal rate of 
return indicates the desirability of, an investment: 

If the IRR is greater than the designated rate of return, the investment is finan- 
cially attractive. 
If the IRR is equal to the designated rate of return, the investment is marginal. 
If the IRR is less than the designated rate of return, the investment is financially 
unattractive. 

Table 3.2 compares some of the features of PBP, NPV, and IRR. 
Numerous other measures of profitability exist, and most companies (and 

financial professionals) use more than one. Cut-off levels are placed on the meas- 
ures of profitability so that proposals that fall below the cut-off level are not deemed 
worthy of consideration. Those that fall above the cut-off level can be ranked in 
order of profitability and examined in more detail. 

In optimization you are interested in 

1. Minimizing the payback period (PBP), or 
2. Maximizing the net present value (NPV), or 
3. Maximizing the internal rate of return (IRR) 
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TABLE 3.2 
Comparisons of various methods used in economic analyses 

Payback period (PBP) Net present value (NPV) Internal rate of return (IRR) 

Definition 

Number of years for the net Present worth of receipts less IRR equals the interest rate i 
after-tax income to recover the the present worth of such that the NPV of receipts 
net investment without disbursements less NPV of disbursements 
considering time value of equals zero 
money 

Advantages 

Measure of fluidity of an Works with all cash flow Gives rate of return that is a 
investment patterns familiar measure and indicates 

relative merits of a proposed 
Commonly used and well Easy to compute 

investment 
understood Gives correct ranking in most Treats variable cash flows 

project evaluations 
Does not require reinvestment 
rate assumption 

Disadvantages 

Does not measure profitability Is not always possible to Implicitly assumes that capital 

Ignores life of assets 
specify a reinvestment rate for recovered can be reinvested at 
capital recovered the same rate 

Does not properly consider the Size of NPV ($) sometimes Requires trial-and-error 
time value of money and fails to indicate relative calculation 
distributed investments or cash 

profitability 
flows Can give multiple answers for 

distributed investments 

or optimizing another criterion of profitability. The decision variables are adjusted 
to reach an extremum. In most of the problems and examples in the subsequent 
chapters we have not included factors for the time value of money because we want 
to focus on other details of optimization. Nevertheless, the addition of such factors 
is quite straightforward. 

EXAMPLE 3.6 CALCULATION OF THE OPTIMAL INSULATION 
THICKNESS 

In Example 3.3 we developed an objective function for determining the optimal thick- 
ness of insulation. In that example the effect of the time value of money was intro- 
duced as an arbitrary constant value of r, the repayment multiplier. In this example, 
we treat the same problem, but in more detail. We want to determine the optimum 
insulation thickness for a 20-cm pipe carrying a hot fluid at 260°C. Assume that cur- 
vature of the pipe can be ignored and a constant ambient temperature of 27°C exists. 
The following information applies: 
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Values of energy saved 

\L 
Insulation cost 

FIGURE E3.6 
Cash flows for insulating a pipe. 

Y 8000 operating hourslyear 
Ht 3.80/106 kJ fuel cost, 80% thermal efficiency (boiler) 
k 0.80 kJ/(h)(m)("C), insulation 
C, $34/cm insulation for 1 m2 of area, cost of insulation 
h~ 32.7 W(h)(m2)("C), heat transfer coefficient (still air) 

Life of the insulation = 5 years 
Annual discount rate (i) = 14% 

L 100 m, length of pipe 

The insulation of thickness x can be purchased in increments of 1 cm (i.e., 1 ,2 ,3  cm, 
etc.). Equation (b) in Example 3.3 still applies. The value of the energy saved each 
year over 5 years is 

and the cost of the insulation is 

at the beginning of the 5-year period. Figure E3.6 is the time line on which the cash 
flows are placed. 

The basis for the calculations will be L = 100m. Because the insulation comes in 1- 
cm increments, let us calculate the net present value of insulating the pipe as a function 
of the independent variable x; vary x for a series of I-, 2-, 3-cm (etc.) thick increments to 
get the respective internal rates of return, the payback period, and the return on invest- 
ment. The latter two calculations are straightforward because of the assumption of five 
even values for the fuel saved. The net present value and internal rates of return can be 
compared for various thicknesses of insulation. The cost of the insulation is an initial neg- 
ative cash flow, and a sum of five positive values represent the value of the heat saved. 
For example, for 1 cm insulation the net present value is (r = 0.291 from Table 3.1) 
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A summary of the calculations is 

Value Net Internal 
Insulation Insulation of fuel Payback Return on present rate of 
thickness cost saved period investment value return 

x (cm) ($1 ($/year) (years) (% per year) ($) (%) 

From Example 3.3, Equation E3.3(4 gives x = 6.4 cm as the optimal thickness cor- 
responding to the net present value as the criterion for selection. Note that the optimal 
thickness chosen depends on the criterion you select. 

Additional examples of the use of PBP, NPV, and IRR can be found in 
Appendix B. In Section B.5, we present a more detailed explanation of the vari- 
ous components that constitute the income and expense values that must be used 
in project evaluation. 
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PROBLEMS 

3.1 If you borrow $100,000 from a lending agency at 10 percent yearly interest and wish 
to pay it back in 10 years in equal installments paid annually at the end of the year, 
what will be the amount of each yearly payment? Compute the principal and interest 
payments for each year. 

3.2 Compare the present value of the two depreciation schedules listed below for i = 0.12 
and n = 10 years. Depreciation is an expense and thus has a negative sign before each 
value. The present value also have a negative sign. 

Year (a) (b) 

3.3 To provide for the college education of a child, what annual interest rate must you 
obtain to have a current investment of $5000 grow to become $10,000 in 8 years if the 
interest is compounded annually? 

3.4 A company is considering a number of capital improvements. Among them is pur- 
chasing a small pyrolysis unit that is estimated to earn $15,000 per year at the end of 
each year for the next 5 years at which time the sellers agree to purchase the unit back 
for $550,000. Ignore tax effects, risk, and so on, and determine the present value of the 
investment based on an interest rate of 15.00% compounded annually. At the end of 
year 2 there will be an expense of $25,000 to replace the unit combustion chamber. 

3.5 One member of your staff suggests that if your department spends just $10,000 to 
improve a process, it will yield cost savings of $3000, $5000, and $4000 over the next 
3 years, respectively, for a total of $12,000. Your company policy is to have an internal 
rate of return of at least 15% on process improvements. What is the NPV of this pro- 
posed improvement? 

3.6 You want to save for a cruise in the Caribbean. If you place in a savings account at 6% 
interest $200 at the beginning of the first year, $350 at the beginning of the next year, and 
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$250 at the beginning of the third year, how much will you have available at the end of 
the third year? 

3.7 You open a savings account today (the middle of the month) with a $775 deposit. The 
account pays 6t% interest (annual value) compounded semimonthly. If you make 
semimonthly deposits of $50 beginning next month, how long will it take for your 
account to reach $4000? 

3.8 Looking forward to retirement, you wish to accumulate $60,000 after 15 years by mak- 
ing deposits in an account that pays 9!% interest compounded semiannually. You open 
the account with a deposit of $3200 and intend to make semiannual deposits, begin- 
ning 6 months later, from your profit-sharing bonus paychecks. Calculate how much 
these deposits should be. 

3.9 What is the present value of the tax savings on the annual interest payments if the loan 
payments consist of five equal monthly installments of principal and interest of $3600 
on a loan of $120,000. The annual interest rate is 14.0%, and the tax rate is 40%. 
(Assume the loan starts at the first of July so that only five payments are made during 
the year on the first of each month starting August 1.) 

3.10 The following advertisement appeared in the newspaper. Determine whether the state- 
ment in the ad is true or false, and show by calculations or explanation why your answer 
is correct. 

A 15-year fied-rate mortgage with annual payments saves you nearly 60 
percent of the total interest costs over the life of the loan compared with a 30- 
year fixed-rate mortgage. 

3.11 You borrow $300,000 for 4 years at an interest rate of 10% per year. You plan to pay 
in equal annual, end-of-year installments. Fill in the following table. 

Balance due Principal Interest Total 
at beginning payment, payment, payment, 

Year of year, $ $ $ $ 

Consideration is being given to two plans for supplying water to a plant. Plan A 
requires a pipeline costing $160,000 with annual operation and unkeep costs of $2200, 
and an estimated life of 30 years with no salvage. Plan B requires a flume costing 
$34,000 with a life of 10 years, a salvage value of $5600, and annual operation and 
upkeep of $4500 plus a ditch costing $58,000, with a life of 30 years and annual costs 
for upkeep of $2500. Using an interest rate of 12 percent, compare the net present val- 
ues of the two alternatives. 

3.13 Cost estimators have provided reliable cost data as shown in the following table for the 
chlorinators in the methyl chloride plant addition. Analysis of the data and recornrnen- 
dations of the two alternatives are needed. Use present worth for i = 0.10 and i = 0.20. 
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Chlorinators 

Glass-lined Cast iron 

Installed cost $24,000 $7200 

Estimated useful life 10 years 4 years 

Salvage value $4000 $800 

Miscellaneous annual costs as percent of original cost 10 20 

Maintenance costs 

Glass-lined. $230 at the end of the second year, $560 at the end of the fifth year, and 
$900 at the end of each year thereafter. 

Cast iron. $730 each year. 

The product from the glass-lined chlorinator is essentially iron-free and is estimated to 
yield a product quality premium of $1700 per year. Compare the two alternatives for 
a 10-year period. Assume the salvage value of $800 is valid at 10 years. 

3.14 Three projects (A, B, C) all earn a total of $125,000 over a period of 5 years (after-tax 
earnings, nondiscounted). For the cash-flow patterns shown in the table, predict by 
inspection which project will have the largest rate of return. Why? 

Cash flow, $103 

Year A B C 

3.15 Suppose that an investment of $100,000 will earn after-tax profits of $10,000 per year 
over 20 years. Due to uncertainties in forecasting, however, the projected after-tax 
profits may be in error by ?20 percent. Discuss how you would determine the sensi- 
tivity of the rate of return to an error of this type. Would you expect the rate of return 
to increase by 20 percent of its computed value for a 20-percent increase in annual 
after-tax profits (i.e., to $12,000)? 

3.16 The installed capital cost of a pump is $200/hp and the operating costs are 4#/kWh. 
For 8000 Nyear of operation, an efficiency of 70 percent, and a cost of capital i = 0.10, 
for n = 5 years, determine the relative importance of the capital versus operating costs. 

3.17 The longer it takes to build a facility, the lower its rate of return. Formulate the ratio 
of total investment I divided by annual cash flow C (profit after taxes plus deprecia- 
tion) in terms of I-, 2-, and 3-year construction periods if i = interest rate, and n = life 
of facility (no salvage value). 

3.18 A chemical valued at $0.94/lb is currently being dried in a fluid-bed dryer that allows 
0.1 percent of the 4-million lbfyear throughput to be carried out in the exhaust. An 
engineer is considering installing a $10,000 cyclone that would recover the fines; extra 
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pressure drop is no concern. What is the expected payback period for this investment? 
Maintenance costs are estimated to be $300/year. The inflation rate is 8 percent, and 
the interest rate 15 percent. 

3.19 To reduce heat losses, the exterior flat wall of a furnace is to be insulated. The data pre- 
sented to you are 

Temperature inside the furnace at the wall 
Air temperature outside wall 
Heat transfer coefficients 

Outside air film (h) 
Conductivity of insulation (k) 

Cost of insulation 
Values of energy saved 
Hours of operation 
Interest rate 

500°F (constant) 
Assume constant at 70°F 

4 ~tu/(h)(f t~)("~)  
0.03 Btu/(hr)(ft)("F) 
$0.75/(ft2) (per inch of thickness) 
$0.60/106 Btu 
8700lyear 
30% per year for capital costs 

Note that the overall heat transfer coefficient U is related to h and k by 

where t is the thickness in inches of the insulation, and the heat transfer through the 
wall is Q = UA (Tfm,, - T,,,), where T is in OF. Ignore any effect of the uninsulated 
part of the wall. 

What is the minimum cost for the optimal thickness of the insulation? List specif- 
ically the objective function, all the constraints, and the optimal value of t .  Show each 
step of the solution. Ignore the time value of money for this problem. 

3.20 We want to optimize the heat transfer area of a steam generator. A hot oil stream from 
a reactor needs to be cooled, providing a source of heat for steam production. As 
shown in Figure P3.20, the hot oil enters the generator at 400°F and leaves at an 
unspecified temperature T,; the hot oil transfers heat to a saturated liquid water stream 
at 250°F, yielding steam (30 psi, 250°F). The other operating conditions of the 
exchanger are 

U = 100 Btu/(h) (ft2) (OF) overall heat transfer coefficient 

We ignore the cost of the energy of pumping and the cost of water and only consider 
the investment cost of the heat transfer area. The heat exchanger cost is $25/ft2 of heat 

Water 
(250°F, 
saturated) 

Oil (Tz) 

Steam 
generator !- 

Steam 
(250°F, 
30 psia) 

Hot oil 
(400°F) 

FIGURE P3.20 
Steam generator flow diagram. 



CHAPTER 3: Formulation of the Objective Function 109 

transfer surface. You can expect a credit of $2/106 Btu for the steam produced. Assume 
the exchanger will be in service 8000 hlyear. Find the outlet temperature T, and heat 
exchanger area A that maximize the profitability, as measured by (a) return on invest- 
ment (ROI) and (b) net present value. 

3.21 In Chemical Engineering (Jan. 1994, p. 103) the following explanation of 
internal rate of return appeared: 

Internal return rate. The internal return rate (ZRR), also known as the dis- 
counted cash flow return rate, is the iteratively calculated discounting rate 
that would make the sum of the annual cashflows, discounted to the present, 
equal to zero. As shown in Figure 2, the ZRR for Project Chem-A is 38.3%/yl: 
Note that this single jixed point represents the zero-profitability situation. It 
does not vary with the cost of capital (discount rate), although the prof- 
itability should increase as the cost of capital decreases. There is no way that 
the ZRR can be related to the projitability of a project at meaningful discount 
rates because of the nonlinear nature of the discounting step. 

What is correct and incorrect about this explanation? Be brief! 

3.22 Refer to Problem 3.5. The same staff member asks if the internal rate of return on 
the proposed project is close to 15%. Calculate the IRR. 

3.23 The cost of a piece of equipment is $30,000. It is expected to yield a cash return per 
month of $1000. What is the payback period? 

3.24 After retrofitting an extruder, the net additional income after taxes is expected to be 
$5000 per year. The remodeling cost was $50,000. What is the return on investment in 
percent? 

3.25 Your minimum acceptable rate of return (MARR) is 18%, the project life is 10 years, 
and no alternatives have a salvage value. The following mutually exclusive alternatives 
have been proposed. Rank them, and recommend the best alternative. 

Capital investment, $ 38,000 50,000 55,000 60,000 70,000 
Net annual earnings, $ 11,000 14,100 16,300 16,800 19,200 
IRR, % 26.1 25.2 26.9 25.0 24.3 

3.26 You have four choices of equipment (as shown in the following table) to solve a pol- 
lution control problem. The choices are mutually exclusive and you must pick one. 
Assuming a useful life of 10 years for each design, no market value, and a pretax min- 
imum acceptable rate of return (MARR) of 15% per year, rank them and recommend 
a choice. 

Alternative DI D2 D3 D4 

Capital investment, $1000 600 760 1,240 1,600 
Annual expenses, $1000 780 728 630 574 
P (present value), $1000 - $4,5 15 - $4,414 -$4,402 - $4,48 1 
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3.27 A company invests $1,000,000 in a new control system for a plant. The estimated 
annual reduction in cost is calculated to be $162,000 in each of the next 10 years. What 
is the 
(a) Return on investment (ROI) 
(b) Internal rate of return (IRR) 
Ignore income tax effects and depreciation to simplify the calculations. 

3.28 The following table gives a comparison of costs for two types of heaters to supply heat 
to an oil stream in a process plant at a rate of 73,500,000 Btu/h: 

- -- 

Oil convection Rotary air preheater 

Heat input in lo6 Btu/h 114.0 96.5 
Thermal efficiency, % 64.5 76.1 
Total fuel cost (at $1.33/per lo6 Btu) for 1 year $1,261,000 $1,068,000 
Power at $0.06/kWh for 1 year 48,185 
Capital cost (installed), $ $1,888,000 $2,420,000 

Assume that the plant in which this equipment is installed will operate 10 years, that 
a tax rate of 34%/year is applicable, and that a charge of 10% of the capital cost per 
year for depreciation will be employed over the entire 10-year period, that fixed 
charges including maintenance incurred by installation of this equipment will amount 
to lO%Iyear of the investment, and that a minimum acceptable return rate on invested 
capital after taxes and depreciation is 15%. Determine which of the two alternative 
installations should be selected, if any. 

3.29 You are proposing to buy a new, improved reboiler for a distillation column that will 
' save energy. You estimate that the initial investment will be $140,000, annual savings 

will be $25,000 per year, the useful life will be 12 years, and the salvage value at the 
end of that time will be $40,000. You are ignoring taxes and inflation, and your pretax 
constant dollar minimum acceptable rate of return (MARR) is 10% per year. Your boss 
wants to see a sensitivity diagram showing the present worth as a function of ?50% 
changes in annual savings and the useful life. 
(a) What is the present value P of your base case? 
(b) You calculate the P of -50% annual savings to be - $42,084 and the P for +50% 

annual savings to be $128,257. The P at -50% life is -$8,539. What is the P at 
+50% life? 

(c) Sketch the P sensitivity diagram for these two variables [P vs the change in the 
base (in %)I. To which of the two variables is the decision most sensitive? 




