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Abstract

The extractive distillation process of ethanol (using glycerol as extractor) was modeled, simu-
lated, analyzed and finally optimized. The model was implemented in EMSO and involves equipment
such as distillation columns (with condensers and reboilers), splitter, mixers, pressure modifiers el-
ements (valve and pump) and a heat exchanger. The process modeling was developed in steady
state. The optimization problem focused in finding optimal value for three operational variables
(extraction column reflux ratio, makeup glycerol flow and regenerated glycerol purity) in order to
maximize a profit objective function. For solving it, surrogate model strategy was adopted; getting
elude typical convergence failure on solving non-linear algebraic system of equation. For building
the surrogate model, a data set of objective function values for different combinations of decision
variables was obtained; by using the EMSO Case Study tool, which carries out a global sensitivity
analysis. Surrogate model parameters were estimated using this data set. Only two cycles of opti-
mization task were needed: a first surrogate model to reduce the feasible region and a second one
(with updated model parameters) for increasing the accuracy. Using the surrogate model, optimal
values for decision variables were found by applying the interior point optimization algorithm built
in EMSO. The optimal point was fed into the rigorous model for verifying it really corresponds to a
maximum of the objective function in the rigorous model. Sensitivity analysis was performed with
rigorous model for testing the sensitivity of objective function to deviation from the optimum values;
demonstrating the iterative optimization procedure using adaptive surrogate model was successful.
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1 Introduction

The researches of new energy sources for replacing fossil fuels have promoted the development of biore-
fineries for production of biodiesel or bioethanol. Efficient design and operation of distillation systems
are critical for success of bioethanol; since this process of separation and purification to obtain fuel grade
ethanol has high energy consumption.

There are several papers and articles about the subject. Use of commercial simulation software
such as ASPEN, HYSYS or MATLAB for modeling and simulating the systems is common. In this
work modeling, simulation and optimization were implemented and executed in EMSO (Environment
for Modeling, Simulation and Optimization) [1] instead of any commercial software.

There are some papers approaching both operational and design variables optimization [2]; or com-
paring cases using different design configurations or extractors [3]. In this work, design characteristics
of distillation system were considered fixed for optimization purpose.

Regarding the optimization method employed, mostly papers use stochastic or deterministic algo-
rithm, and a few use a combination of both. Kiss and Ignat [4] use Sequential Quadratic Programming
(SQP) optimization method and sensitivity analysis tools from Aspen Plus. In the other hand, Garćıa-
Herreros and Gómez [2] implemented in MatLab stochastic algorithm for discrete variables and nonlinear
programming (NLP) for continuous variables. Finally, Dias [5] apply Pinch Analysis concepts to deter-
mine the optimal conditions from an Aspen Plus simulation. In this work, surrogate model strategy was
adopted for solving the optimization problem. Surrogate models have been successfully applied in many
complex and nonlinear optimization problems [6] and [7].
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2 Process description

Extractive distillation is a separation process by distillation in presence of an additional miscible sub-
stance; which is able to modify relative volatility of components present in the original mixture to be
separated. The addition of this new substance modifies the grade of components purity separation
feasible by distillation [8].

The studied extractive distillation system has two distillation columns: the first one where extraction
process is executed and the second one for extractor regeneration process. Both, the extractor and
the mixture to be separated are fed into the first column in different trays. This column operates at
atmospheric pressure and highly concentrated ethanol (over 99.5% [9]) is obtained as distillate stream.
Bottom liquid stream of first column (mostly glycerol and water) is supplied into the second one. This
column operates at vacuum pressure (0.2 atm.) in order to avoid thermal decomposition of glycerol; and
produces regenerated glycerol as liquid bottom stream. Regenerated glycerol is mixed with make-up
glycerol and return to the extraction column. There are also a valve and a pump for handling operating
pressure differences between columns; and a heat exchanger for fixing the temperature of glycerol entering
into extraction column. The process diagram is shown in Fig. 1.

Figure 1: Extractive distillation process diagram in EMSO

3 Methods

3.1 Process modeling and simulation

Distillation column was modeled as several separation stages in series; where each tray is consider a
separation stage. The equilibrium stage model approach [10], consist on the solution of MESH equation
(M: Material balance, E: Equilibrium relations, S: Summation constraints of compositions and H: Head
balance) was adopted. Material and heat balances for each tray, in steady state and without consider
side draw-off or heat addition were made according to [11].

0 = Fjzj + Vj+1yj+1 + Lj−1xj−1 − Vjyj − Ljxj (1)
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where F , V and L are the molar flow of feed, vapor and liquid respectively for one tray. z, y and x,
are the molar compositions of feed, vapor and liquid respectively. The different notation for the vapor
composition is due to this valor is already rectified by the tray efficiency. In the heat balance, hF , hV e
hL are the molar enthalpy of feed, vapor and liquid respectively for one tray.

The effect of incomplete mass transference was considered by applying the Murphree efficiency equa-
tion. In Eq. (3) Ej is the Murphree efficiency related with the vapor phase for each component in
the tray j, y is the media molar composition of the vapor phase corrected and y is the media molar
composition of the vapor phase in thermodynamic equilibrium with the liquid phase leaving the tray.

Ej =
yj − yj+1

yj − yj+1

(3)

Compositions of vapor and liquid phases leaving each tray are correlated for the thermodynamic
equilibrium condition [12]. In Eq. (4) y and x are the molar composition of vapor and liquid phases in
equilibrium respectively, and K is the vapor-liquid equilibrium ratio. This equation is used to calculate
the ideal molar composition of vapor phase according to thermodynamic equilibrium. Otherwise, Eq.
(3) allows obtain the real molar composition of vapor phase leaving a tray; which is use in the material
balance equations.

yj = Kjxj (4)

There are also constraints for the summation of molar compositions that should be equal to 1.

NC∑
i=1

yi = 1 (5)

NC∑
i=1

xi = 1 (6)

In steady state simulation, pressure profile of the column should be specified. Despite of in the process
studied pressure profile were not considered, the developed model is able to deal with different pressures
on top and bottom. Condenser was modeling as total condenser, assuming that outlet liquid is saturated
and consider pressure drop. Reboiler was modeling as flash with heat supplied and considering pressure
drop. Liquid and vapor stream leaving the reboiler were considered in thermodynamic equilibrium [13].
Others equipment such as pressure modifier, heat exchanger, mixer and splitter were also modeled.
The Plugin VRTherm of EMSO was used for evaluating physical and thermodynamic properties of
components. The vapor phase was considered as ideal gas due to the low operating pressure. Otherwise,
the UNIFAC thermodynamic model was used for representing the nonideality of the liquid phases.

Systems involving two distillation columns and recycle are highly nonlinear; so it is difficult to
solve the algebraic system of equation if there aren’t good initial estimates for unknown variables.
For this reason, a modular strategy to get convergence of isolated equipment was adopted. Latter
these equipment were interconnected each other until complete the whole system. The main design
information and variables specifications used for simulation of the base case are shown in Table 1 and
Table 2 respectively.

Table 1: Columns design specifications

Description Extraction Column Regeneration Column
Numbers of trays 18 6

Feed tray 2 (Glycerol) / 11 (Feed) 2
Top pressure (atm) 1 0.2

Bottom pressure (atm) 1 0.2
Murphree efficiency (%) 100 100
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Table 2: Operational specifications

Description Azeotropic Mixture Make-up Glycerol
Flow (kmol/h) 100 73

Temperature (K) 350 300
Pressure (atm) 1 1

Composition (Ethanol, Water, Glycerol) (85, 15, 0) (0, 0, 100)
Description Extraction Column Regeneration Column
Reflux ratio 0.10 0.04

Ethanol purity / glycerol purity 99.5 99.97
Description Valve / Pump Heat Exchanger

Pressure drop / increase (atm) 0.8 -
Outlet Temperature (K) - 350

3.2 Formulation of optimization problem

The mathematical formulation of optimization problem involves only continuous variables; due to po-
tential discrete variables such as design variables are fixed. It includes an objective function, equality
constraints concerning to the physical modeling of the process (material and heat balances, equilibrium
equations, etc.) and inequality constraints related to operational and quality specifications. The objec-
tive function depends on optimization variables. In spite of the objective function is linear, the equality
constraints are not; therefore it’s expected that the response of the objective function to changes in the
optimization variables will be nonlinear. The general form of a nonlinear programming optimization
problem for maximizing the economic profit is represented below.

Maximize: S(x) (The Objective Function)

Subject to:
hi(x) = 0 i = 1, . . . , Number of Equality Constraints (NEC).
gj(x) ≤ 0 j = 1, . . . , Number of Inequality Constraints (NIC).

The optimization variables chosen were:

1. Reflux ratio in extraction column (RR).

2. Make-up glycerol flow (FGly).

3. Regenerated glycerol purity (XGly).

The equality constraints (model constraints) are the equations involved on the physical model of
the process and the inequality constraints (operational constraints) are maximum values for: operat-
ing temperature (g1(x)), reflux ratio in extraction column (g2(x)) and regenerated glycerol purity (g3(x)).

 g1(x) = Tmax. − 555K ≤ 0
g2(x) = RR − 5 ≤ 0
g3(x) = xglycerol − 0.9999 ≤ 0

(7)

The objective function involves the maximization of the annual profit for the production of fuel grade
ethanol.

Annual profit ($/year):
S(x) = TS(x) − TC(x) (8)

Total sales ($/year):
TS(x) = FethanolPethanoltop. (9)

Total cost ($/ano):
TC(x) = (Cam + Cgly + Cen)top (10)
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 Cam = FamPam

Cgly = FglyPgly

Cen = DrebsPen

(11)

The nomenclature used in the above equations is: S(x) is the profit, TS(x) are the total sales and
TC(x) are the total cost. Fethanol is the fuel grade ethanol yield in (kmol/h), Pethanol is the fuel grade
ethanol sale price in ($/kmol) and top is the annual operating time in (h/year). Cam, Cgly and Cen are
the feed azeotropic mixture cost, make-up glycerol cost and reboilers energy costs respectively in ($/h).
Fam and Fgly are the azeotropic mixture and make-up glycerol flow in (kmol/h). Pam and Pgly are the
row material price in ($/kmol). While, Drebs is the total reboilers duty in (kJ/h) and Pen is the reboiler
energy price in ($/kJ).

3.3 Optimization method

Considering the complexity and nonlinearity of the equality constraints equations involving in the phys-
ical model, and the convergence trouble of the numerical methods for this kind of systems; a surrogated
model strategy was adopted in order to solve the optimization problem. The methodology employed
was similar to described in [6].

It was necessary to implement in EMSO a new model with the economic aspects and the objective
function, in order to obtain directly the response of the objective function for different combinations of
optimization variables values.

For generating the data set from the rigorous model, could be advisable to use any strategy of design of
experiments (like Latin Hypercube Design (LHD) [14]) with the objective of decreasing the computational
cost. Considering that the number of independent variables is three and the simulation is in steady state,
the computational cost is not high, therefore it was not necessary to apply a computational design of
experiments.

According to the results of the sensitivity analysis in the base case, the surrogate model for the
objective function was built using reflux ratio in the extraction column and make-up glycerol flow as
independent variables. For this reason, regenerated glycerol purity was fixed as an active constraint.
There are many examples of using surrogate models on engineering (based on artificial neural network
or kriging models) in order to substitute complex model [7]. In this work was used a surrogate model
involving only the left member of a kriging model. It means, a polynomial surrogate model of second
order with interaction as describe in Eq. (12).

S(x) = k00 + k11RR + k12R
2
R + k21FGly + k22F

2
Gly + k33RRFGly (12)

where S(x) is the profit in ($/h), RR is the reflux ratio in the extraction column and FGly is the make-up
glycerol flow in (kmol/h). kij are the parameters of the surrogate model to be calculated. Notice that it
was convenient to work with the objective function in ($/h) instead of ($/year) in order to make similar
the magnitude orders of the variables involve on the model construction.

4 Results and discussion

4.1 Base case simulation

The initial model implemented in EMSO has 997 variables, 977 equations and 20 specifications for the
simulation of the base case. It is a previous step that facilitates influence and sensitivity analysis of the
process variables; as well as the future optimization. With a base case simulation running, sensitivity
analysis were realized; focusing on describe the behavior of some of the most relevant variables such
as: ethanol yield and reboiler duties; due to they are very involve within process economy. It wasn’t
analyzed ethanol purity because it’s a specification in the model; consequently this requirement will be
always satisfied.
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Make-up glycerol flow was changed from 50 to 90, within 2 kmol/h steps. When make-up glycerol
flow increases, reboiler 1 duty (from extraction column) increases as well, but reboiler 2 duty (from
regeneration column) decreases. Nevertheless, net result is total reboilers duty increase with make-up
glycerol flow increase, as shown in Fig. 2a. Regarding ethanol yield, it increases when make-up glycerol
flow increases, as shown in Fig. 2b. In this case there is a compromise between the benefit of obtaining
more ethanol yield by increasing make-up glycerol flow and the disadvantage of bigger total reboilers
duty.

Reflux ratio in extraction column was increased from 0.02 to 0.6 within 0.02 steps. The Fig. 2c shows
there is a range of reflux ratio values where the total reboilers duty is lower. Concerning the ethanol
yield, its variation isn’t too significant. Nevertheless, there is also a range of reflux ratio values where
ethanol yield is bigger, as shown in Fig. 2d. When reflux ratio is bigger than 0.30, the performance
of response variables is not favorable at all; because total reboilers duty increases and ethanol yield
decreases.

Regenerated glycerol purity was changed from 0.9989 to 0.9999 within 0.0001 steps. It has also very
influence in reboilers duties as shown in Fig. 2e. It’s necessary to increase reboiler 2 duty in order to
increase regenerated glycerol purity; but on the other hand, it causes a bigger reduction of reboiler 1
duty, and consequently the net total reboiler duty is lower. The Fig. 2f shows the response of ethanol
yield and total reboilers duty as function of regenerated glycerol purity. It’s notable that they both have
a satisfactory behavior when regenerated glycerol purity increases, since ethanol yield increases and total
reboilers duty decreases. For this reason it’s convenient to operate within high values of regenerated
glycerol purity.

4.2 Surrogate model construction and optimization

Once added the objective function and others economic aspects, the final model has 1010 variables,
982 equations and 28 specifications. It was executed a Case Study changing the values of optimization
variables and obtaining the response of the objective function. The values of inequality constraints were
also observed in order to check if they were not violated. A data set reflecting the objective function
value for each combination of independent variables and additional information regarding inequality
constraints was obtained. These data were examined to check if any inequality constraint isn’t satisfied
and then exclude this combination of data from the feasible region.

The study of the data set allow conclude that when regenerated glycerol purity is lower than 0.9997,
the objective function change to negative values. These results were considered out of the feasible region;
consequently these data weren’t considered for estimation of surrogate model parameters. It was also
observed that regenerated glycerol purity has a direct and proportional influence in the objective func-
tion, so as regenerated glycerol purity increases, the objective function increases as well. Consequently,
in the optimal point, this variable will have the biggest allowed value, getting the limit of the correspon-
dent inequality constraints. This conclusion was very important because made possible to reduce one
dimension in optimization problem, going from three to two degree of freedom (reflux ratio and make-up
glycerol flow).

For surrogate model parameters calculation was used the EMSO Parameter Estimation tool. The
parameters of the first surrogate model were estimated with an adequate adjust of R2=0.971084 and
are shown in Table 3. Although global adjust between first surrogate and rigorous model is good, it
isn’t so good precisely for high S(x) values, as shown in Fig. 3a and Fig. 4a. For this reason, it
was hoped optimal values found using this surrogate model don’t meet the optimal for the rigorous
one. An approximate optimal solution was obtained by optimizing the first surrogate model, using the
EMSO Optimization tool. The independent variables were constraints to the range of values used for the
parameters estimation of surrogate model. The operational inequality constraints are fulfilled because
for surrogate model calculation was used only a data set from the feasible region.

The results obtained by this first surrogate model (shown in Table 4) don’t meet the rigorous model
precisely. Besides, by small perturbation on optimization variables and watch over the objective function
values, was confirmed this solutions wasn’t an optimum for rigorous model. However, these approximate
optimal values were used for reducing the search region and update the surrogate model parameters.

In the second Case Study the optimization variables were changed between an interval near to
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(a) (b)

(c) (d)

(e) (f)

Figure 2: Influence of different operational variables in ethanol yield and energy consumption.

approximated optimal point obtained above. A data set of S(x) response surface with a promissory
region for a maximum of the objective function was obtained. The parameters of surrogate model were
update with a very good fitting of R2=0.999047 (see Fig. 3b) using the new data set of the promissory
region. The estimated parameters for the second surrogate model are shown in Table 3.

Fig. 4b shows the comparison between S(x) response surface using the second surrogate model and
the rigorous model respectively. Notice that there is a good fitting between the second surrogate model

7

554

Clarissa
Retângulo



Table 3: Estimated parameters for the surrogate models.

Surrogate K00 K11 K12 K21 K22 K33
model ($/h) ($/h) ($/h) ($/kmol) ($2/kmol2) ($/kmol)
First 288.865 -151.41 26.0665 6.97471 -0.0559346 -0.0278739

Second 218.108 2207.35 -14742.2 6.45417 -0.0520906 -0.503687

and the rigorous one. It’s hope now the results obtained by optimizing the surrogate model meet the
rigorous model, considering a permissible error.

(a) (b)

Figure 3: Graphic report for parameter estimation in EMSO, comparing S(x) values calculated from
rigorous and surrogate models. (a) Using first surrogate model. (b) Using second surrogate model.

(a) (b)

Figure 4: Comparison between response surface from rigorous and surrogate models. (a) Using first
surrogate model. (b) Using second surrogate model.

Optimization of the second surrogate model was carried out in EMSO. The optimization variables
are constraints to the range of values valid for the estimation of the second surrogate model. The results
of optimization are shown in Table 4.

Regarding inequality constrains of operational variables, all of them were accomplished. Regenerated
glycerol purity was the only active constrain, while reflux ratio and make-up glycerol flow kept as inactive
constrains.
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Table 4: Optimization results.

Base First surrogate Second surrogate
Variable U/M Case model optimization model optimization

Reflux ratio (RR) - 0.10 0.05 0.074
Make-up glycerol flow (FGly) kmol/h 73.00 62.33 61.59

Regenerated glycerol purity (XGly) - 0.9997 0.999 0.999

Profit by surrogate model (S
′
(x)) $/h - 513.84 498.34

Profit by rigorous model (S(x)) $/h 258.33 490.04 498.30

 g1(x) = 512K − 555K = −43
g2(x) = 0.074 − 5 = −4.926
g3(x) = 0.9999 − 0.9999 = 0

(13)

4.3 Sensibility analysis

A sensibility analysis was performed using the rigorous model for verifying if this solution was exactly an
optimum. Each optimization variable was changed individually in a range close to its optimal value. The
objective function at optimal point is not very sensitive to changes on reflux ratio or make-up glycerol
flow, as shown in Fig. 5a. On the contrary, Fig. 5b shown that small changes on regenerated glycerol
purity will affect drastically the objective function. For this reason, this variable must be controlled more
accurately. Results of the sensitivity analysis confirm that optimal point calculated by the surrogate
model is also an optimum of the rigorous model and correspond to a maximum of the objective function;
due to any change on optimization variables cause a decrease on the objective function.

(a) (b)

Figure 5: Sensibility analysis for deviation of optimization variables from the optimal point. (a) For
reflux ratio and make-up glycerol flow. (b) For regenerated glycerol purity (active constraint).

5 Conclusions

The process modeling and simulation allow analyses the influence of different operational variables on the
general behavior of the process. The iterative procedure, using adaptive surrogate model, demonstrated
to be a successful methodology for solving the optimization problem. Optimal values of operational
variables analyzed were calculated for the studied system, and the premises used for it. The optimal
point is especially sensitive to variation in the regenerated glycerol purity.
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