

OTIMIZAÇÃO DE PROBLEMAS DE ENGENHARIA QUÍMICA UTILIZANDO O SOFTWARE EMSO

J. P. HENRIQUE¹, A. R. SECCHI², M. A. S. S. RAVAGNANI³, C. B. B. COSTA³

¹ Universidade Federal de São Carlos, Programa de Pós-Graduação em Engenharia Química
² Universidade Federal do Rio de Janeiro, Instituto Alberto Luiz de Coimbra de Pós-Graduação e Pesquisa de Engenharia (COPPE)
³ Universidade Estadual de Maringá, Departamento de Engenharia Química E-mail para contato: cbbcosta@uem.br

RESUMO – O EMSO, software livre para fins de ensino e pesquisa acadêmica, apresenta um ambiente favorável à simulação e otimização de problemas de engenharia química, por permitir a visualização e edição de modelos utilizando linguagem própria. Ademais, o software permite que novos códigos (solvers) criados pelo usuário sejam inseridos, o que se estende a códigos de algoritmos de otimização. Considerando esta ampla versatilidade e abrangência de aplicação, o objetivo deste trabalho foi modelar no EMSO problemas de otimização não linear (NLP), linear inteira-mista (MILP) e não linear inteira-mista (MINLP), tanto mono quanto multiobjetivos. Algoritmos determinísticos e um não determinístico, inserido no EMSO como solver, foram utilizados na solução dos problemas. Os resultados demonstram a eficácia do EMSO para a solução de problemas de otimização em engenharia química, uma vez que todos os problemas foram resolvidos, obtendo, inclusive, resultados melhores do que os publicados na literatura.

1. INTRODUÇÃO

Atualmente estão disponíveis comercialmente diversos simuladores de sistemas e processos químicos que podem ser basicamente divididos em dois grupos: simulador modular sequencial, como o Aspen Plus© e HYSYS Process© e os simuladores baseados em equações como o gPROMS©, Aspen Dynamics© e o EMSO (*Environment for Modeling, Simulation and Optimization*) (Soares e Secchi, 2003). A interface gráfica do EMSO combina o desenvolvimento de modelos, construção de fluxogramas, simulação e otimização de processos químicos (Rodrigues *et al.*, 2010). Com uma biblioteca dinâmica com diversos algoritmos de solução de equações algébricas e diferenciais, este software permite a adição de novos *plugins* (cálculo de propriedades termodinâmicas, interface com outros softwares, etc.) e adição de *solvers* para solução de problemas de otimização ou interpolação de dados (Furlan *et al.*, 2016).

Diante da grande possibilidade de aplicações por meio desse software, este trabalho teve como objetivo a sua utilização na otimização de problemas clássicos de engenharia química e a comparação de resultados com aqueles publicados na literatura.

2. MODELOS DE OTIMIZAÇÃO

2.1. Programação mono-objetivo não linear (NLP)

Para essa otimização mono-objetivo foi desenvolvido um modelo com três reatores perfeitamente agitados (*CSTR - Continuous Stirred-tank Reactor*) em série, com o propósito de encontrar os volumes dos reatores 1, 2 e 3 de forma que minimize a concentração do reagente A na saída do terceiro reator (C_{A3}). O modelo foi implementado de acordo com a equação de consumo desse reagente (Equação 1), além dos parâmetros e variáveis descritas abaixo.

$$r_{Ai} = k C_{Ai}^{1,5}, \ i = \{1, 2, 3\}$$

$$F_0(C_{Ai-1} - C_{Ai}) = r_{Ai} V_i, \ i = \{1, 2, 3\}$$
(1)
(2)

em que: F_0 : vazão volumétrica constante [m³/h];

 C_{A0} é a concentração do reagente A na alimentação (entrada do reator); C_{Ai} a concentração do reagente na saída do reator *i*, *i*={1,2,3} [kmol/m³]; V_i : volume do reator *i*, *i*={1,2,3} [m³]; *k*: constante de reação do componente A [m^{1,5}/(h kmol^{0,5})]; r_{Ai} : velocidade de reação [kmol/(h m³)];

O modelo de otimização (Equação 3) tem como objetivo minimizar C_{A3} , de forma que a soma dos volumes dos três reatores seja menor ou igual a 7,0 m³. O algoritmo utilizado foi o IPOPT (*Interior Point OPTimizer*) disponibilizado por Wächter e Biegler (2006) já implementado na biblioteca original do software. O valor do parâmetro $k \neq 1,0 \text{ m}^{1,5}/(\text{h.kmol}^{0,5})$ e as variáveis F_0 e C_{A0} recebem valores de 2,0 m³/h e 1 kmol/m³, respectivamente.

min
$$C_{A3}$$

s.a. $\sum_{i=1}^{3} V_i - 7 \le 0; Eq.(1); Eq.(2); \quad V_i \in \mathfrak{R}^*_+$ (3)

2.2. Programação multiobjetivo não linear por enxame de partículas

Baseado em um modelo *flash* com uma fonte de calor $Q_{entrada_flash}$ e uma fonte mássica com vazão constante $F_0 = 496,3$ kmol/h a 340 K de uma mistura ternária equimolar (pentano, hexano, benzeno), foi implementado um modelo de otimização multiobjetivo, de forma a maximizar a fração do componente pentano na fase vapor ($z_{1_{saida_vapor}}$) e minimizar o fluxo de calor no equipamento (Q _{entrada flash}), operando a uma pressão constante de 1 atm (igual à entrada).

Por se tratar de uma otimização multiobjetivo, a Equação 4 apresenta as duas funções objetivo, além do intervalo para a temperatura no *flash* definido com base nos pontos de ebulição (309,15 e 353,15 K) do pentano (mais volátil) e do benzeno (menos volátil), respectivamente.

O modelo foi implementado usando um algoritmo multiobjetivo por enxame de partículas (*MO-PSO - Multiobjective Particle Swarm Optimization*) disponibilizado por Gonçales *et al.* (2012) e implementado na biblioteca do software pelo usuário. Para essa otimização utilizaram-se 20 partículas com um máximo de 30 iterações.

2.3. Programação linear inteira-mista (MILP)

 T_{flash} , $Q_{\text{entrada flash}}$, z_i saida vapor $\in \mathfrak{R}^*_+$, $i = \{1, 2, 3\}$

Como descrito por Biegler *et al.* (1999), o problema proposto é maximizar o lucro de uma empresa fornecedora de um produto químico C que pode ser fabricado pelo Processo II ou III, os quais utilizam como matéria prima o produto químico B. Esse produto B pode ser adquirido a partir de outra empresa, ou então ser fabricado pelo Processo I que utiliza A como matéria-prima, que tem suprimento máximo de 16 ton/h. O preço de compra dos produtos químicos A e B são 500 e 950 \$/ton, respectivamente.

A demanda máxima de C é de 15 ton/h e o preço de venda para as primeiras 10 ton/h é de 1800 \$/ton e 1500 \$/ton para o excesso. Na Tabela 1, são apresentados alguns dados referentes à conversão e custos operacionais e de investimento.

Tuberu T Budeb de euste e converbue nos processos du empresa (Bregier et un, 1999)							
Drogosso	Conversão	Investimento e custo operacional					
Processo		Fixo (\$/ton)	Variável (\$/ton matéria-prima)				
Ι	90% de A para B	1.000	250				
II	82% de B para C	1.500	400				
III	95% de B para C	2.000	550				

Tabela 1 – Dados de custo e conversão nos processos da empresa (Biegler et al., 1999)

Diante dos dados apresentados, podem-se verificar, no esquema por superestrutura, as alternativas de produção do produto químico C (Figura 1). As variáveis binárias y são variáveis de decisão entre um processo ou outro e as variáveis x representam os fluxos mássicos de produção em ton/h.

Depois de produzido C, seja pelo Processo II (x_{C2}) ou III (x_{C3}), consideram-se dois casos possíveis: ou a soma ($x_{C2} + x_{C3}$) é menor ou igual a 10 ton/h ou está entre 10 e 15 ton/h. Considerando esse condicional, deve-se acrescentar as variáveis inteiras de decisão (y_{D1} e y_{D2}) e as variáveis reais (x_{CD1} e x_{CD2}) que representam o valor da soma ($x_{C2} + x_{C3}$) entre 0 e 10 ton/h e de 10 a 15 ton/h, respectivamente. O modelo de otimização pode ser verificado na Equação 5.

Utilizou-se o código determinístico BONMIN (*Basic Open-source Nonlinear Mixed INteger programming*) com o *solver* disponibilizado na biblioteca do software e implementado com base no método disponibilizado por Bonami *et al.* (2008).

Figura 1 – Superestrutura do processo de produção de C.

(5)

 $\max L = 100[18x_{CD1} + 180y_{D2} + 15(x_{CD2} - 10y_{D2}) - 10y_{A1} - 7, 5x_{A1} - 9, 5x_{B0} - 15y_{B2} - 4x_{B2} - 20y_{B3} - 5, 5x_{B3}]$

s.a. $x_{A1} - 16 y_{A1} \le 0$ $x_{B1} - 0, 9 x_{A1} = 0$ $y_{B2} + y_{B3} - 1 = 0$ $x_{B0} - 50 y_{B0} \le 0$ $y_{A1} + y_{B0} - 2 \le 0$ $x_{B2} + x_{B3} - x_{B1} - x_{B0} = 0$ $x_{B2} - 30 y_{B2} \le 0$ $x_{C2} - 0,82 x_{B2} = 0$ $x_{B3} - 30 y_{B3} \le 0$ $x_{C3} - 0,95 x_{B3} = 0$ $x_{C2} + x_{C3} - 15 \le 0$ $x_{CD1} + x_{CD2} - x_{C2} - x_{C3} = 0$ $y_{D1} + y_{D2} - 1 = 0$ $x_{CD1} - 10 y_{D1} \le 0$ $x_{CD2} - 15 y_{D2} \le 0$ $y_{B0} + y_{A1} - 1 \ge 0$ $x_{CD2} - 10 y_{D2} \ge 0$ $y_{A1}, y_{B0}, y_{B2}, y_{B3}, y_{D1}, y_{D2} \in \{0, 1\}$ $x_{A1}, x_{B0}, x_{B1}, x_{B2}, x_{B3}, x_{C2}, x_{C3}, x_{CD1}, x_{CD2} \in \Re_+$

2.4. Programação não linear inteira-mista (MINLP)

Foi utilizado um modelo não linear misto com inteiros de três trocadores de calor, operando em contracorrente e conectados de acordo com a Figura 2. Nessa rede de trocadores o objetivo é operá-los com o menor custo anual possível, considerando o custo das utilidades nos trocadores 2 e 3 e o custo de instalação de cada trocador, que é função de suas respectivas áreas. Os dados referentes às temperaturas, custos e vazões estão apresentados na Tabela 2 (Turkay e Grosmann, 1996).

Figura 2 – Esquema de instalação da rede de trocadores.

Considerou-se que $(T_{Q_{entrada}} - T_2)$ e $(T_1 - T_{F_{entrada}})$ sejam maiores ou iguais a 10 K, para que nas saídas das correntes fria e quente do trocador 1 exista ainda um gradiente de temperatura considerável.

Nesse contexto, os parâmetros e variáveis do problema são os seguintes, considerando a DTML (Diferença de Temperatura Média Logarítmica) aproximada pelo método de Paterson (1984) para evitar problemas de indeterminação logarítmica durante a otimização (Equação 6). Parâmetros:

 $T_{Q_entrada}$: Temperatura de entrada do fluido quente no trocador 1 [K]; $T_{F_entrada}$: Temperatura de entrada do fluido frio no trocador 1 [K] T_{Q_saida} : Temperatura de saída do fluido quente no trocador 2 [K]; $T_{AR_entrada}$: Temperatura de entrada da água de resfriamento no trocador 2 [K]; T_{AR_saida} : Temperatura de saída da água de resfriamento no trocador 2 [K]; T_{AR_saida} : Temperatura de entrada do vapor no trocador 3 [K]; T_{vapor_saida} : Temperatura de saída do vapor no trocador 3 [K]; T_{F_saida} : Temperatura de saída do fluído frio no trocador 3 [K]; T_{F_saida} : Temperatura de saída do fluído frio no trocador 3 [K]; U1: Coeficiente global de troca térmica no trocador i, i = {1,2,3} [kW/m²·K]; FCp_Q: Produto da vazão mássica pelo calor específico do fluido quente [kW/K]; FCp F: Produto da vazão mássica pelo calor específico do fluido frio [kW/K];

Variáveis binárias:

 y_{ij} : Escolha (1) ou não (0) da faixa de área i, para o trocador j, com i={1,2,3} e j={1,2,3};

Variáveis Reais:

T1: Temperatura de saída do fluído quente no trocador 1 [K];

T2: Temperatura de saída do fluído frio no trocador 1 [K];

Ai: Área de troca térmica do trocador i, $i = \{1,2,3\} [m^2];$

e_troc i: Constante para cálculo do DTML no trocador i, com i=1,2,3 [-];

tetaMA_troc_i: Média aritmética para cálculo do DTML no trocador i, com i=1,2,3 [-];

tetaMG_troc_i: Média geométrica para cálculo do DTML no trocador i, com i=1,2,3 [-];

delta_ln_i: DTML para o tocador i, com i=1,2,3 [-];

 $qQ_{\underline{ln}\underline{l}}$: Taxa de calor trocado pelo fluido quente no trocador i, com i=1,2,3 [kW];

qQ_cp_1: Taxa de calor trocado pelo fluido quente no trocador i, com i=1,2,3 [kW];

Tabla 2 Dados da Tede de Hocadores de Calor (Tarka) e Grossmann, 1990)							
Corrente	FCp (kW/K)	T _{entrada} (K)	T _{saída} (K)	Custo (\$/kW·ano)			
Quente	10,0	500	340				
Fria	7,5	350	560				
Água de resfriament	0	300	320	20			
Vapor		600	600	80			
Tuanadan da aalan	Coeficiente global de troca	Trocador de	Possível	Custo de investimento			
I rocador de calor	térmica [kW/(m ² K)]	calor	área (m ²)	(\$/ano)			
1	1,5		$0 < A \le 10$	$2750 \text{ A}^{0,6} + 3000$			
2	0,5	1, 2 e 3	$10 < A \le 25$	$1500 \text{ A}^{0,6} + 15000$			
3	1,0		$25 < A \leq 50$	$600 \mathrm{A}^{0,6} + 46500$			

Tabela 2 – Dados da rede de trocadores de calor (Turkay e Grossmann, 1996)

Para resolver esse problema, utilizou-se o código determinístico BONMIN com as variações (Branch-and-Bound - BB) e (Outer-Approximation - OA).

Esse mesmo problema foi resolvido com o uso do MINLP-PSO (método não determinístico), baseado no método por enxame de partículas de Kennedy e Eberthart (1997) e Laskari *et al.* (2002), desenvolvido em linguagem C++ e adicionado à biblioteca do software. Para a otimização foram utilizadas 400 partículas e um máximo de 70 iterações.

min $z = y11(2750 A1^{0.6} + 3000) + y21(1500 A1^{0.6} + 15000) + y31(600 A1^{0.6} + 15000)$	-46500) +	
$y_{12}(2750 A2^{0.6} + 3000) + y_{22}(1500 A2^{0.6} + 15000) + y_{32}(600 A2^{0.6})$	$2^{0.6}$ + 46500) +	
$y_{13}(2750 \text{ A}3^{0.6} + 3000) + y_{23}(1500 \text{ A}3^{0.6} + 15000) + y_{33}(600 \text{ A}3^{0.6} + 15000) + y_{33}(700 \text{ A}3^{0.6} + 15000) + y_{33}(700 \text{ A}3^{0.6} + 15000) + y_{33}(700 $	$3^{0.6} + 46500) + $	
20 qQ LN 2+80 qF LN 3		
s.a. e troc1 = $1 - (TQ entrada - T2)/(T1 - TF entrada)$	$qQ_LN_1 - U1A1 deltaT_ln_1 = 0$	
$e_{troc2} = 1 - (TQ_{saida} - TAR_{entrada})/(T1 - TAR_{saida})$	$qQ_CP_1 - Fcp_H (TQ_entrada-T1) = 0$	
e_troc3 = 1 - (Tvapor_entrada - TF_saida)/(Tvapor_saida - T2)	$qQ_LN_1 - qQ_CP_1 = 0$	
$tetaAM_troc1 = (T1 - TF_entrada)(1 - e_troc1/2)$	$qQ_LN_2 - U2 A2 deltaT_ln_2 = 0$	
$tetaGM_troc1 = (T1 - TF_entrada)(1 - e_troc1/2 - e_troc12^2/8 - e_troc1^3/16)$	$qH_CP_2 - Fcp_H (T1 - TQ_saida) = 0$	
$tetaAM_troc2 = (T1 - TAR_saida)(1 - e_troc2/2)$	$qQ_LN_2 - qQ_CP_2 = 0$	
$tetaGM_troc2 = (T1 - TAR_saida)(1 - e_troc2/2 - e_troc2^2/8 - e_troc2^3/16)$	$qF_LN_3 - U3 A3 deltaT_ln_3 = 0$	
$tetaAM_troc3 = (Tvapor_saida - T2)(1 - e_troc3/2)$	$qF_CP_3 - Fcp_C (TF_saida - T2) = 0$	
$tetaGM_troc3 = (Tvapor_saida - T2)(1 - e_troc3/2 - e_troc3^2/8 - e_troc3^3/16)$	$qF_LN_3 - qF_CP_3 = 0$	
$deltaT_ln_1 = (1/3)tetaAM_troc1 + (2/3)tetaGM_troc1$	qQ_LN_1 - Fcp_C (T2-TF_entrada)=0	
$deltaT_ln_2 = (1/3)tetaAM_troc2 + (2/3)tetaGM_troc2$		(6)
$deltaT_ln_3 = (1/3)tetaAM_troc3 + (2/3)tetaGM_troc3$		(0)
y11+y21+y31-1=0	$A1 - 10 y11 - 25 y21 - 50 y31 \le 0$	
y12 + y22 + y32 - 1 = 0	A1 - 0y11 - 10y21 - 25y31 > 0	
$y_{13} + y_{23} + y_{33} - 1 = 0$	$A2 - 10 y12 - 25 y22 - 50 y32 \le 0$	
TQ entrada – T2 ≥ 10	A2 - 0 y12 - 10 y22 - 25 y32 > 0	
T1 - TF entrada >=10	$A3 - 10 y13 - 25 y23 - 50 y33 \le 0$	
	A3 - 0 y13 - 10 y23 - 25 y33 > 0	
e_troci, tetaAM_troci, tetaGM_troci, deltaT_ln_i, qQ_LN_	$i, qQ_CP_i, z \in \Re, i = 1,2,3;$	
$y_{ii} \in \{0,1\}, i = 1,2,3; j = 1,2,3;$		

3. RESULTADOS E DISCUSSÃO

 $Ai \in \Re_+, \quad 0 \le Ai \le 50, \quad i = 1,2,3;$ $T1 \in \Re, \quad 351 \le T1 \le 500;$ $T2 \in \Re, \quad 350 \le T2 \le 499;$

3.1. Programação mono-objetivo não linear (NLP) - Reatores CSTR

Inicialmente pode-se verificar o comportamento do modelo pela definição das variáveis V_1 , V_2 e V_3 com os valores de 1, 2 e 4 m³, obtendo no final da simulação os valores de 0,704, 0,426 e 0,217 kmol/m³ para C_{A1} , C_{A2} e C_{A3} , respectivamente. Para o estudo de otimização (Equação 3), essas variáveis (V_i) são liberadas para busca, deixando o modelo com 3 graus de liberadade, encontrando os valores de 2,077, 2,332 e 2,590 m³ para V_1 , V_2 e V_3 e a função objetivo (min C_{A3}) apresenta valor de 0,210 kmol/m³.

3.2. Programação multiobjetivo não linear por enxame de partículas – Modelo *flash*

A Figura 3 apresenta as partículas não dominadas da primeira e última iteração podendose observar (Figura 3a) que para os menores consumos de energia (da ordem de 3800 kW) não há

separação dos componentes ($z_1 = 0,33$) no *flash*, pois as proporções de entrada são mantidas na fase líquida formada na saída do *flash* e neste caso não há formação da fase vapor. A maior separação do componente pentano ocorre com um consumo da ordem de 50.600 kW a 279,15 K (Figura 3a). A Figura 3b apresenta a frente não dominada da última iteração e como as partículas estão distribuídas, podendo-se observar que ocorre uma tendência de conflito entre as duas funções otimizadas, pois para um aumento da fração de ($z_{1_saída_vapor}$) há também um aumento no consumo de energia ($Q_{entrada}$).

Figura 3 – Distribuição das partículas não dominadas. (a) primeira iteração; (b) última iteração.

3.3. Programação linear inteira-mista (MILP) – Otimização de processo

Após executar a otimização MILP com as restrições e condições apresentadas conclui-se que para produzir C e obter um lucro máximo deve-se utilizar o Processo I e o Processo III com um valor inicial de 16,00 tonA/h. Verifica-se também que a variável y_{D2} recebeu o valor 1, ou seja, $y_{D1} = 0$ e o total de C é 13,68 ton/h, obtendo um lucro de 600,00 \$/h.

3.4. Programação não linear inteira-mista (MINLP) - Rede de trocadores

Após executar a otimização no software baseado no modelo de otimização (Equação 6), e considerando o cálculo do DTML pela aproximação de Paterson (1984), pode-se verificar que o menor custo anual é obtido pelo método determinístico quando as áreas dos trocadores 1, 2 e 3 são 25, 20,18 e 7,68 m², respectivamente. Nesta condição operacional a T1 é 397,31 K e T2 é 486,92 K, gerando um custo de 117.105,00 \$/ano. Esse resultado corresponde a um custo anual 0,590% menor do que aquele apresentado por Turkay e Grossmann (1996) (custo anual de 117.800 \$/ano).

A solução pelo método não determinístico apresentou um custo anual de 117.109 \$/ano, resultando em uma economia anual de 0,586% quando comparado à publicação acima citada e os valores finais das variáveis são praticamente os mesmos encontrados pelo método determinístico.

4. CONCLUSÕES

A aplicação de diversas metodologias de otimização para problemas de engenharia química mostrou resultados satisfatórios e, em um caso de estudo, melhores do que o apresentado

pela literatura. O estudo aqui apresentado demonstra a grande versatilidade do software EMSO para solução de problemas de otimização.

5. AGRADECIMENTOS

Os autores agradecem a CAPES, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, e ao CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico.

6. REFERÊNCIAS BIBLIOGRÁFICAS

BIEGLER, L.T.; GROSSMANN, I.E.; WESTERBERG, A.W. Systematic methods of chemical process design, New Jersey: Editora Prentice Hall, 1999.

BONAMI, P.; BIEGLER, L.T.; CONN, A.R.; CORNUÉJOLS, G.; GROSSMANN, I.E.; LAIRD, C.D.; LEE, J.; LODI, A.; MARGOT, F.; SAWAYA, N.; WÄTCHER, A. An algorithmic framework for convex mixed integer nonlinear programs. *Discrete Optim.* v. 5, n. 2, p. 186-204, 2008.

FURLAN, F.F.; LINO, A.; MATUGI, K.; CRUZ, A.J.G.; SECCHI, A.R.; GIORDANO, R.C. A simple approach to improve the robustness of equation-oriented simulators: Multilinear look-up table interpolators. *Comp. Chem. Eng.* v. 86, p. 1-4, 2016.

GONÇALES, L.C.G.; FURLAN, F.F; SOARES, R.P.; SECCHI, A.R.; GIORDANO, R.C., COSTA, C.B.B. Implementation of Pareto Multi-objective Particle Swarm Optimization Algorithm in EMSO. *Eng Opt 2012*. v. 73, p. 1-7, 2012.

KENNEDY, J.; EBERHART R.C. A discrete binary version of the particle swarm algorithm. *IEEE Int. Conf. Syst. Man. Cybern.* v. 05, p. 4105-4108, 1997.

LASKARI, E.C.; PARSOPOULOS, K.E., VRAHATIS, M.N. Particle swarm optimization for integer programming. *IEEE C. Evol. Computat.* v. 02, p. 1582-1587, 2002.

PATERSON, W.R. A replacement for the logarithmic mean. *Chem. Eng. Sci.*, v. 39, n. 11, p. 1635-1636, 1984.

RODRIGUES, R.; SOARES, R.P.; SECCHI, A.R. Teaching chemical reaction engineering using EMSO simulator. *Comput. Appl. Eng. Educ.* v. 18, n. 4, p. 607–618, 2010.

SOARES, R. P.; SECCHI, A.R. EMSO: A new environment for modelling, simulation and optimisation. *Comp. Aid. Che. Engng.* p. 947-952, 2003.

TURKAY, M.; GROSSMANN, I.E. Disjunctive programming techniques for the optimization of process systems with discontinuous investment costs – multiple size regions. *J. Ind. Eng. Chem.* v. 35, p. 2611-2623, 1996.

WÄCHTER, A.; BIEGLER, L.T. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, *Math. Program.* v. 106, n. 1, p. 25-57, 2006.

PROMOCÃO

REALIZAÇÃO

ORGANIZAÇÃO