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Abstract 
In this work we present a new technique of model order reduction applied to staged 
processes. The proposed method reduces the dimension of the original system based on 
null values of moment-weighted sums of heat and mass balances residuals on real 
stages. To compute these sums of weighted residuals a discrete form of Gauss-Lobatto 
quadrature is developed, allowing a high degree of accuracy on these calculations. 
Balances related to upstream and downstream devices (such as condenser, reboiler, and 
feed tray of a distillation column) are considered as boundary conditions of the 
corresponding difference-differential equations system. The chosen number of moments 
is the dimension of the reduced model being much lower than the dimension of the 
complete model and do not depend on the size of the original model. Scaling of the 
discrete independent variable related with the stages was crucial for the computational 
implementation of the proposed method, avoiding accumulation of round-off errors 
presented even in low-degree polynomial approximations in the original discrete 
variable. Dynamical simulations of distillation columns were carried out to check the 
performance of proposed reduction technique and, the differential-algebraic nature of 
the equations was exploited. The obtained results show the superiority of the new 
procedure in comparison with traditional orthogonal collocation method. Global heat 
and mass balances are fulfilled in this new method. Moreover, in traditional orthogonal 
collocation method the points where the residuals are canceled are fixed, and in the new 
method moving collocation points are obtained, characterizing a desirable adaptive 
nature of this technique. Lower computational costs were obtained in dynamic 
simulations with reduced models, maintaining predictive capacity of the complete 
model, revealing that this new technique can be used in real-time applications. 
 
Keywords: Model order reduction, discrete domain, weighted residuals, orthogonal 
collocation, distillation column. 

1. Introduction 
Rigorous dynamic mathematical models of staged separation systems with mass and 
energy balances lead to a large set of differential-algebraic equations, making them 
impractical for real-time applications. The challenge to reduce the computational cost of 
such systems motivated the development of different model order reduction techniques, 
such as compartmental models (España and Landau, 1978; Benallou et al., 1986; Musch 
and Steiner, 1993) and its variants aggregated modeling (Lévine and Rouchon, 1991; 
Linhart and Skogestad, 2009) and time-scale separation (Kumar and Daoutidis, 2003) 
based on singular perturbation analysis, nonlinear wave propagation (Marquardt, 1986; 
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Kienle, 2000), model linearization (Georgakis and Stoever, 1982), and orthogonal 
collocation. 
Wong and Luus (1980) were the first to apply orthogonal collocation for order reduction 
of staged separation systems, by transforming the difference-differential equations into 
partial differential equations with subsequent application of the orthogonal collocation 
method in a continuous domain. Cho and Joseph (1983) showed that is possible to apply 
the orthogonal collocation method directly in the discrete domain by adequate selection 
of polynomials, and further Stewart et al. (1985) showed the Hahn’s polynomials are the 
best choice for better results as well as more reliable reduced models. Following this 
approach, Pinto and Biscaia (1987) presented four different order reduction strategies 
dealing with the discontinuities that happen between the sections of staged separation 
systems, whereas Seferlis and Hrymak (1994) treated all discontinuous stages as 
discrete stages and applied order reduction for each section between these discrete 
stages using orthogonal collocation on finite elements technique with different 
polynomials for the vapor and liquid phases. 
In this work we present a new technique of model order reduction of staged separation 
systems based on null values of moment-weighted sums of heat and mass balances 
residuals on real stages. To compute these sums of weighted residuals a discrete form of 
Gauss-Lobatto quadrature is developed, allowing a high degree of accuracy on these 
calculations. Balances related to upstream and downstream devices (such as condenser, 
reboiler, and feed tray of a distillation column) are considered as boundary conditions of 
the corresponding difference-differential equations system, dealing nicely with the 
discontinuities that may occur at these points using only one polynomial for each 
section. Scaling of the discrete independent variable related with the stages is also 
introduced in this work, which was a drawback for applying discrete orthogonal 
collocation methods, avoiding accumulation of round-off errors presented even in low-
degree polynomial approximations in the original discrete variable. 

2. Order Reduction Technique 
In order to introduce the proposed model order reduction technique, let us consider a 
generic section of a staged separation system described by the following difference-
differential equations: 
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with the boundary conditions x0(t) = p(t) e xN+1(t) = q(t). Applying a polynomial 
approximation of degree n + 1 in the state variables xi(t), using the following scaled 
independent variable representing the stages of the system: 
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and considering the internal points 0 < s(1) < s(2) < … < s(n) < 1 and the extreme points 
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where ( )j s

( )( j

 are the Lagrange interpolating polynomials and for the sake of notation 

( ) , )jx t x s t . For each interpolating points, i = 0, 1, 2, …, n + 1, the following 

residual function are defined: 
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where the first-order negative and positive differences are evaluated as: 
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In the traditional method of discrete orthogonal collocation, xi(t) are find such that the 
residuals at the internal points, i = 1, 2, …, n, are canceled (collocation points): 
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and the boundary conditions x0(t) = p(t) e xn+1(t) = q(t) complete the system of n + 2 
equations. In order to skip the discontinuities that may occur in the boundaries, a similar 
approach of Seferlis and Hrymak (1994) can be applied in the traditional method by 
adding two extra collocation points at the extreme stages of the section of the separation 
system, and for these points the residuals are defined as: 
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where the boundary conditions are x-1(t) = p(t) e xn+2(t) = q(t). However, this modified 
approach has the disadvantage of increasing the size of the system, or reducing the 
degree of the orthogonal polynomial by two if keeping the same size of the traditional 
method. 
In the proposed method, xi(t) are find such that sum of the moment-weighted residuals 
are canceled for the first n moments: 
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These sums of weighted residuals are evaluated using a discrete form of Gauss-Lobatto 
quadrature: 
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where  and i are the quadrature weights. This quadrature is exact for 

polynomial functions up to degree 2 n + 1, which is always the case for the linear case 

because 
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 ( 1) ,n s t  is a polynomial of degree n + 1. 

As the n equations in (11) are linear, they can be rewritten in the following form: 
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where  and  with bi,0 = Mi,0, bi,1 = Mi,1 and M is the square 

matrix by removing the first and the last columns. By substituting Eq. (
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the following expression can be derived: 
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The boundary conditions x0(t) = p(t) e xn+1(t) = q(t) complete the system of n + 2 
equations. Note that the traditional orthogonal collocation is reproduced by setting 
Vi0 = 0 and Vi1 = 0. In both cases, s(1), s(2), …, s(n) are the roots of the Hahn’s polynomial 
of degree n. 
Using the proposed scaled discrete independent variable, the roots of the Hahn’s 
polynomial are obtained with high accuracy for any degree, whereas high accumulation 
of round-off errors are observed in the original discrete variable, even for low-degree 
polynomials. 
It must be emphasized that global heat and mass balances are fulfilled in the proposed 
method, which are given by the zero-order moment. Moreover, in traditional orthogonal 
collocation method the points where the residuals are canceled are fixed (s(1), s(2), …, 
s(n)), and in the proposed method moving collocation points are obtained, characterizing 
a desirable adaptive nature of this technique. 

3. Illustrative Example 
In order to illustrate the application of the proposed method, a distillation column to 
separate propane and propylene was used, as described in Seferlis and Hrymak (1994) 
and with the specifications given in Table 1. 

Table 1. Distillation column specifications 

number of trays 175 
feed tray 116 

feed composition (propylene, propane) [0.8973, 0.1027] 
feed flow rate (kmol/d) 1073.4 

feed temperature 46.11 
operating pressure (kPa) 1860.60 

reflux ratio 19.7 
distillate flow rate (kmol/d) 965 
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The Peng-Robinson equation of state was used for evaluation of the thermodynamic 
properties. In the reduced models, for the rectifying section 5 internal points were used, 
and for the stripping section only 3 points, i.e., a reduction of 95%. The procedure was 
implemented in the EMSO simulator. In Figure 1, the liquid molar fraction and 
temperature steady-state profiles for the complete model and for the reduced models 
using the proposed method and the traditional orthogonal collocation method are 
presented, where the superiority of the new approach in comparison with traditional 
method can be observed for the downstream variables, mainly at the bottom of the 
column. These results are better visualized in the tables presented in Figure 1, where the 
absolute square errors relative to the complete model are given for (1) sum of these 
errors over all stages, (2) maximum error, (3) condenser error, (4) reboiler error, and (5) 
feed tray. 
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Figure 1. Steady-state profiles for complete model, proposed method, and orthogonal collocation. 

In order to illustrate the dynamic behavior a step function was applied in the reflux ratio 
at 0.4 h changing from 19.7 to 22, starting the simulation at the steady-state condition. 
In Figure 2, the step response of the propylene composition and the temperature in the 
distillate are presented, showing the predictive capacity of the reduced model even for 
the transient behavior. 
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Figure 2. Distillate temperature and composition step response for complete and reduced models. 

4. Conclusion 
The proposed technique of model order reduction of staged separation systems based on 
the sum of moment-weighted residuals showed to be superior to the traditional 
orthogonal collocation method on discrete domain. The scaling of the discrete 
independent variable was crucial for the accuracy of the roots of Hahn’s polynomials. 
Dynamical simulations results of distillation columns showed the technique can be 
applied for control purposes and other real-time applications. 

5. Acknowledgements 
We want to thanks CNPq for the financial support. 

References 
A. Benallou, D.E. Seborg and D.A. Mellichamp, 1986, Dynamic Compartmental Models for 

Separation Processes, AIChE J., 32, 1067-1078. 
Y.S. Cho and B. Joseph, 1983, Reduced-Order Steady-State and Dynamic Models for separation 

Processes, AIChE J., 29 (2) 261-276. 
C. Georgakis, M.A. Stoever, 1982, Time Domain Order Reduction of Tridiagonal Dynamics of 

Staged Processes – I. Uniform Lumping, Chem. Engng. Sci.,37 (5) 687-697. 
A. España and L.D. Landau, 1978, Reduced Order Bilinear Models for Distillation Columns, 

Automatica, 14, 345-355. 
A. Kienle, 2000, Low-Order Dynamic Models for Ideal Multicomponent Distillation Processes 

Using Nonlinear Wave Propagation Theory, Chem. Engng. Sci., 55, 1817-1828. 
A. Kumar and P. Daoutidis, 2003, Nonlinear Model Reduction and Control for High-Purity 

Distillation Columns, Ind. Eng. Chem. Res., 42, 4495-4505. 
J. Lévine and P. Rouchon, 1991, Quality Control of Binary Distillation Columns via Nonlinear 

Aggregated Models, Automatica, 27, 463-480. 
A. Linhart and S. Skogestad, 2009, Computational Performance of Aggregated Distillation 

Models, Comp. Che. Engng., 33, 296–308. 
W. Marquardt, 1986, Nonlinear Model Reduction for Binary Distillation, In IFAC Symposium 

Dyn. and Control of Chemical Reactors and Distillation Columns, Bournemout, UK, 123-128. 
H.-E. Musch and M. Steiner, 1993, Order Reduction of Rigorous Dynamic Models for Distillation 

Columns, Comput. Chem. Engng., 17 (S1) 311-316. 
J.C. Pinto and E.C. Biscaia, 1987, Order Reduction Strategies for Models of Staged Separation 

Systems, Comput. Chem. Engng., 12 (8) 821-831. 
P. Seferlis and A.N. Hrymak, 1994, Adaptative Collocation on Finite Elements Models for 

Optmization of Multistage Distillation Units, Chem. Engng. Science, 49 (9) 1369-1382. 
W.E. Stewart, K.L. Levien and M. Morari, 1985, Simulation of Fractionation by Orthogonal 

Collocation. Chem. Engng. Sci. 40, 409-421. 
K.T. Wong and R. Luus, 1980, Model Reduction of High-Order Multistage Systems by the 

Method of Orthogonal Collocation, Can. J. Chem. Engng., 58, 382-388. 

1644




