
MATLAB - Documentation

http://www.mathworks.com/...om.br/search?sourceid=navclient&ie=UTF-8&rlz=1T4GGLD_enBR312BR312&q=inv+slash+matlab[19/3/2009 13:06:10]

Home | Select Country | Contact Us | Store

Download Product Updates | Contact sales | Trial software

Products & Services Industries Academia Support User Community Company

Documentation MATLAB

Contents Index

Getting Started

Examples

Desktop Tools and Development
Environment

Mathematics

Data Analysis

Programming Fundamentals

Object-Oriented Programming

Graphics

3-D Visualization

Creating Graphical User
Interfaces

Function Reference

Handle Graphics Property
Browser

External Interfaces

C and Fortran API Reference

Release Notes

Printable Documentation (PDF)

MATLAB®

 Provide feedback about this page

mldivide \, mrdivide / -
Left or right matrix division

Syntax
mldivide(A,B) A\B
mrdivide(B,A) B/A

Description

mldivide(A,B) and the equivalent A\B perform matrix left division (back slash). A and B must
be matrices that have the same number of rows, unless A is a scalar, in which case A\B
performs element-wise division — that is, A\B = A.\B.

If A is a square matrix, A\B is roughly the same as inv(A)*B, except it is computed in a
different way. If A is an n-by-n matrix and B is a column vector with n elements, or a matrix
with several such columns, then X = A\B is the solution to the equation AX = B (see
Algorithm for details). A warning message is displayed if A is badly scaled or nearly singular.

If A is an m-by-n matrix with m ~= n and B is a column vector with m components, or a
matrix with several such columns, then X = A\B is the solution in the least squares sense to
the under- or overdetermined system of equations AX = B. In other words, X minimizes
norm(A*X - B), the length of the vector AX - B. The rank k of A is determined from the QR
decomposition with column pivoting (see Algorithm for details). The computed solution X has
at most k nonzero elements per column. If k < n, this is usually not the same solution as x
= pinv(A)*B, which returns a least squares solution.

mrdivide(B,A) and the equivalent B/A perform matrix right division (forward slash). B and A
must have the same number of columns.

If A is a square matrix, B/A is roughly the same as B*inv(A). If A is an n-by-n matrix and B
is a row vector with n elements, or a matrix with several such rows, then X = B/A is the
solution to the equation XA = B computed by Gaussian elimination with partial pivoting. A
warning message is displayed if A is badly scaled or nearly singular.

If B is an m-by-n matrix with m ~= n and A is a column vector with m components, or a
matrix with several such columns, then X = B/A is the solution in the least squares sense to
the under- or overdetermined system of equations XA = B.

Note Matrix right division and matrix left division are related by the equation
B/A = (A'\B')'.

Least Squares Solutions

If the equation Ax = b does not have a solution (and A is not a square matrix), x = A\b
returns a least squares solution — in other words, a solution that minimizes the length of
the vector Ax - b, which is equal to norm(A*x - b). See Example 3 for an example of this.

Examples

Example 1

Suppose that A and b are the following.
A = magic(3)

A =

 8 1 6

http://www.mathworks.com/index.html?ref=logo&s_cid=docframe_homepage
http://www.mathworks.com/index.html?s_cid=docframe_homepage
http://www.mathworks.com/company/worldwide/?s_cid=docframe_company_worldwide
http://www.mathworks.com/company/aboutus/contact_us/?s_cid=docframe_aboutus_contact_us
http://www.mathworks.com/store/?s_cid=docframe_store
http://www.mathworks.com/store/?s_cid=docframe_store
http://www.mathworks.com/store/?s_cid=docframe_store
http://www.mathworks.com/support/web_downloads_bounce.html?s_cid=1008_degr_docdn_270055&s_cid=docframe_support_web_downloads_bounce
http://www.mathworks.com/support/web_downloads_bounce.html?s_cid=1008_degr_docdn_270055&s_cid=docframe_support_web_downloads_bounce
http://www.mathworks.com/company/aboutus/contact_us/contact_sales.html?ref=doc&s_cid=docframe_contact_us_contact_sales
http://www.mathworks.com/company/aboutus/contact_us/contact_sales.html?ref=doc&s_cid=docframe_contact_us_contact_sales
http://www.mathworks.com/programs/bounce/doc_tryit.html?s_cid=docframe_bounce_doc_tryit
http://www.mathworks.com/programs/bounce/doc_tryit.html?s_cid=docframe_bounce_doc_tryit
http://www.mathworks.com/products/?s_cid=docframe_products
http://www.mathworks.com/industries/?s_cid=docframe_industries
http://www.mathworks.com/academia/?s_cid=docframe_academia
http://www.mathworks.com/support/?s_cid=docframe_support
http://www.mathworks.com/matlabcentral/?s_cid=docframe_matlabcentral
http://www.mathworks.com/company/?s_cid=docframe_company
http://www.mathworks.com/access/helpdesk/help/helpdesk.html
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_product_page.html
http://www.mathworks.com/access/helpdesk/help/techdoc/learn_matlab/bqr_2pl.html
http://www.mathworks.com/access/helpdesk/help/techdoc/learn_matlab/bqr_2pl.html
http://www.mathworks.com/access/helpdesk/help/techdoc/demo_example.html
http://www.mathworks.com/access/helpdesk/help/techdoc/demo_example.html
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_env/bqrf3v_.html
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_env/bqrf3v_.html
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_env/bqrf3v_.html
http://www.mathworks.com/access/helpdesk/help/techdoc/math/bqqz59g.html
http://www.mathworks.com/access/helpdesk/help/techdoc/math/bqqz59g.html
http://www.mathworks.com/access/helpdesk/help/techdoc/data_analysis/ug_intropage.html
http://www.mathworks.com/access/helpdesk/help/techdoc/data_analysis/ug_intropage.html
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_prog/bqjgwp9.html
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_prog/bqjgwp9.html
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_oop/ug_intropage.html
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_oop/ug_intropage.html
http://www.mathworks.com/access/helpdesk/help/techdoc/creating_plots/bqrw9tj.html
http://www.mathworks.com/access/helpdesk/help/techdoc/creating_plots/bqrw9tj.html
http://www.mathworks.com/access/helpdesk/help/techdoc/visualize/bqliccy.html
http://www.mathworks.com/access/helpdesk/help/techdoc/visualize/bqliccy.html
http://www.mathworks.com/access/helpdesk/help/techdoc/creating_guis/bqz79mu.html
http://www.mathworks.com/access/helpdesk/help/techdoc/creating_guis/bqz79mu.html
http://www.mathworks.com/access/helpdesk/help/techdoc/creating_guis/bqz79mu.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/f16-6011.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/f16-6011.html
http://www.mathworks.com/access/helpdesk/help/techdoc/infotool/hgprop/doc_frame.html
http://www.mathworks.com/access/helpdesk/help/techdoc/infotool/hgprop/doc_frame.html
http://www.mathworks.com/access/helpdesk/help/techdoc/infotool/hgprop/doc_frame.html
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_external/bp_kqh7.html
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_external/bp_kqh7.html
http://www.mathworks.com/access/helpdesk/help/techdoc/apiref/bqoqnz0.html
http://www.mathworks.com/access/helpdesk/help/techdoc/apiref/bqoqnz0.html
http://www.mathworks.com/access/helpdesk/help/techdoc/rn/rn_intro.html
http://www.mathworks.com/access/helpdesk/help/techdoc/rn/rn_intro.html
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_product_page2.html#printable_pdf
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_product_page2.html#printable_pdf
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/mkpp.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/mlint.html
http://www.mathworks.com/survey/support/docfeedback.html?http://www.mathworks.com/access/helpdesk/help/techdoc/ref/mldivide.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/mldivide.html#f90-1002049
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/mldivide.html#f90-1002049
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/mldivide.html#f90-1002555

MATLAB - Documentation

http://www.mathworks.com/...om.br/search?sourceid=navclient&ie=UTF-8&rlz=1T4GGLD_enBR312BR312&q=inv+slash+matlab[19/3/2009 13:06:10]

 3 5 7
 4 9 2

b = [1;2;3]

b =

 1
 2
 3

To solve the matrix equation Ax = b, enter
x=A\b

x =

 0.0500
 0.3000
 0.0500

You can verify that x is the solution to the equation as follows.
A*x

ans =

 1.0000
 2.0000
 3.0000

Example 2 — A Singular

If A is singular, A\b returns the following warning.
Warning: Matrix is singular to working precision.

In this case, Ax = b might not have a solution. For example,
A = magic(5);
A(:,1) = zeros(1,5); % Set column 1 of A to zeros
b = [1;2;5;7;7];
x = A\b
Warning: Matrix is singular to working precision.

ans =

 NaN
 NaN
 NaN
 NaN
 NaN

If you get this warning, you can still attempt to solve Ax = b using the pseudoinverse
function pinv.

x = pinv(A)*b

x =

 0
 0.0209
 0.2717
 0.0808
 -0.0321

The result x is least squares solution to Ax = b. To determine whether x is a exact solution
— that is, a solution for which Ax - b = 0 — simply compute

A*x-b

ans =

 -0.0603
 0.6246
 -0.4320
 0.0141
 0.0415

The answer is not the zero vector, so x is not an exact solution.

Pseudoinverses, in the online MATLAB Mathematics documentation, provides more examples
of solving linear systems using pinv.

Example 3

Suppose that
A = [1 0 0;1 0 0];
b = [1; 2];

Note that Ax = b cannot have a solution, because A*x has equal entries for any x. Entering
x = A\b

returns the least squares solution
x =

 1.5000
 0
 0

along with a warning that A is rank deficient. Note that x is not an exact solution:

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/pinv.html
http://www.mathworks.com/access/helpdesk/help/techdoc/math/f4-2224.html#f4-2282

MATLAB - Documentation

http://www.mathworks.com/...om.br/search?sourceid=navclient&ie=UTF-8&rlz=1T4GGLD_enBR312BR312&q=inv+slash+matlab[19/3/2009 13:06:10]

A*x-b

ans =

 0.5000
 -0.5000

Data Type Support

When computing X = A\B or X = A/B, the matrices A and B can have data type double or
single. The following rules determine the data type of the result:

If both A and B have type double, X has type double.
If either A or B has type single, X has type single.

Algorithm

The specific algorithm used for solving the simultaneous linear equations denoted by X =
A\B and X = B/A depends upon the structure of the coefficient matrix A. To determine the
structure of A and select the appropriate algorithm, MATLAB software follows this
precedence:

1. If A is sparse and diagonal, X is computed by dividing by the diagonal elements of
A.

2. If A is sparse, square, and banded, then banded solvers are used. Band density is
(# nonzeros in the band)/(# nonzeros in a full band). Band density = 1.0 if there are
no zeros on any of the three diagonals.

If A is real and tridiagonal, i.e., band density = 1.0, and B is real with only one
column, X is computed quickly using Gaussian elimination without pivoting.
If the tridiagonal solver detects a need for pivoting, or if A or B is not real, or if B
has more than one column, but A is banded with band density greater than the
spparms parameter 'bandden' (default = 0.5), then X is computed using the Linear
Algebra Package (LAPACK) routines in the following table.

 Real Complex

A and B double DGBTRF, DGBTRS ZGBTRF, ZGBTRS

A or B single SGBTRF, SGBTRS CGBTRF, CGBTRS

3. If A is an upper or lower triangular matrix, then X is computed quickly with a
backsubstitution algorithm for upper triangular matrices, or a forward substitution
algorithm for lower triangular matrices. The check for triangularity is done for full
matrices by testing for zero elements and for sparse matrices by accessing the sparse
data structure.
If A is a full matrix, computations are performed using the Basic Linear Algebra
Subprograms (BLAS) routines in the following table.

 Real Complex

A and B double DTRSV, DTRSM ZTRSV, ZTRSM

A or B single STRSV, STRSM CTRSV, CTRSM

4. If A is a permutation of a triangular matrix, then X is computed with a permuted
backsubstitution algorithm.

5. If A is symmetric, or Hermitian, and has real positive diagonal elements, then
a Cholesky factorization is attempted (see chol). If A is found to be positive definite,
the Cholesky factorization attempt is successful and requires less than half the time of
a general factorization. Nonpositive definite matrices are usually detected almost
immediately, so this check also requires little time.
If successful, the Cholesky factorization for full A is

A = R'*R

where R is upper triangular. The solution X is computed by solving two triangular
systems,

X = R\(R'\B)

Computations are performed using the LAPACK routines in the following table.

 Real Complex

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/spparms.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/chol.html

MATLAB - Documentation

http://www.mathworks.com/...om.br/search?sourceid=navclient&ie=UTF-8&rlz=1T4GGLD_enBR312BR312&q=inv+slash+matlab[19/3/2009 13:06:10]

A and B double DLANSY, DPOTRF,
DPOTRS, DPOCON

ZLANHE, ZPOTRF, ZPOTRS,
ZPOCON

A or B single SLANSY, SPOTRF,
SPOTRS, SDPOCON

CLANHE, CPOTRF, CPOTRS,
CPOCON

6. If A is sparse, then MATLAB software uses CHOLMOD to compute X. The
computations result in

P'*A*P = R'*R

where P is a permutation matrix generated by amd, and R is an upper triangular matrix.
In this case,

X = P*(R\(R'\(P'*B)))

7. If A is not sparse but is symmetric, and the Cholesky factorization failed, then
MATLAB solves the system using a symmetric, indefinite factorization. That is, MATLAB
computes the factorization P'*A*P=L*D*L', and computes the solution X by
X=P*(L'\(D\(L\(P*B)))). Computations are performed using the LAPACK routines in the
following table:

Real Complex

A and B double DLANSY, DSYTRF,
DSYTRS, DSYCON

ZLANHE, ZHETRF, ZHETRS,
ZHECON

A or B single SLANSY, SSYTRF, SSYTRS,
SSYCON

CLANHE, CHETRF, CHETRS,
CHECON

8. If A is Hessenberg, but not sparse, it is reduced to an upper triangular matrix and
that system is solved via substitution.

9. If A is square and does not satisfy criteria 1 through 6, then a general triangular
factorization is computed by Gaussian elimination with partial pivoting (see lu). This
results in

A = L*U

where L is a permutation of a lower triangular matrix and U is an upper triangular
matrix. Then X is computed by solving two permuted triangular systems.

X = U\(L\B)

If A is not sparse, computations are performed using the LAPACK routines in the
following table.

Real Complex

A and B double DLANGE, DGESV, DGECON ZLANGE, ZGESV, ZGECON

A or B single SLANGE, SGESV, SGECON CLANGE, CGESV, CGECON

If A is sparse, then UMFPACK is used to compute X. The computations result in
P*(R\A)*Q = L*U

where
P is a row permutation matrix
R is a diagonal matrix that scales the rows of A
Q is a column reordering matrix.

Then X = Q*(U\L\(P*(R\B))).

Note The factorization P*(R\A)*Q = L*U differs from the factorization used by
the function lu, which does not scale the rows of A.

10. If A is not square, then Householder reflections are used to compute an orthogonal-
triangular factorization.

A*P = Q*R

where P is a permutation, Q is orthogonal and R is upper triangular (see qr). The least
squares solution X is computed with

X = P*(R\(Q'*B))

If A is sparse, MATLAB computes a least squares solution using the sparse qr
factorization of A.
If A is full, MATLAB uses the LAPACK routines listed in the following table to compute
these matrix factorizations.

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/lu.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/qr.html

MATLAB - Documentation

http://www.mathworks.com/...om.br/search?sourceid=navclient&ie=UTF-8&rlz=1T4GGLD_enBR312BR312&q=inv+slash+matlab[19/3/2009 13:06:10]

Real Complex

A and B double DGEQP3, DORMQR,
DTRTRS

ZGEQP3, ZORMQR, ZTRTRS

A or B single SGEQP3, SORMQR,
STRTRS

CGEQP3, CORMQR,
CTRTRS

Note To see information about choice of algorithm and storage allocation for sparse
matrices, set the spparms parameter 'spumoni' = 1.

Note mldivide and mrdivide are not implemented for sparse matrices A that are
complex but not square.

See Also

Arithmetic Operators, linsolve, ldivide, rdivide

 Provide feedback about this page

mkpp mlint

 © 1984-2009- The MathWorks, Inc. - Site Help - Patents - Trademarks -
 Privacy Policy - Preventing Piracy - RSS

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/spparms.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/arithmeticoperators.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/linsolve.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/ldivide.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/rdivide.html
http://www.mathworks.com/survey/support/docfeedback.html?http://www.mathworks.com/access/helpdesk/help/techdoc/ref/mldivide.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/mkpp.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/mlint.html
http://www.mathworks.com/help.html
http://www.mathworks.com/company/aboutus/policies_statements/patents.html
http://www.mathworks.com/company/aboutus/policies_statements/trademarks.html
http://www.mathworks.com/company/aboutus/policies_statements/
http://www.mathworks.com/company/aboutus/policies_statements/piracy.html
http://www.mathworks.com/company/rss/index.html

	mathworks.com
	MATLAB - Documentation

	h0bWw/QWNyb2JhdFdlYkNhcFRJRDEA:
	form9:
	query:
	submitButtonName:

